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Abstract—We design and implement a scalable version of
loopy belief propagation (BP), a widely used algorithm for
performing inference on probabilistic graphical models. However,
implementations of BP on generic data processing platforms such
as Apache Spark do not scale well to very large graphical models
containing billions of vertices. To handle such large-scale graphs,
we leverage a number of strategies. Our implementation is based
on Apache Spark GraphX. We propose a novel graph parti-
tioning strategy to reduce both computation and communication
overhead providing a 2x speed-up. We use efficient memory
management for storing the graph and shared memory for high-
speed communication. To evaluate performance and demonstrate
scalability of the approach, we perform a range of experiments
including using real-world graphs with billions of vertices, where
we achieve an overall 10x speed-up over a vanilla Spark baseline.
Further, we apply our BP implementation to infer the probability
of a website being malicious by performing inference on a
graphical model derived from real, large-scale hyperlinked web-
crawl data. We have open sourced our implementation.

I. INTRODUCTION

Probabilistic graphical models (PGM) combine probabilistic
reasoning with graph theory and are widely used for a variety
of applications including fraud detection, computer vision, and
recommender systems. An important step involved in the use
of such models is inference, that is, making a probabilistic
prediction of one or more variables given evidence on some
other variables. The most common inference methods are
variational [1] or sampling-based [2], which require iterative
computations over the underlying graph until the estimations
converge. Since such algorithms are usually communications
bound and require random data access, their scalability with
model size is poor, especially when the model does not fit in
memory of a single machine.

There are several design challenges related to implementing
graphical model inference that scales to large models. The first
being the choice of the underlying data processing framework,
and whether to use a specialized graph processing system.

In recent years, several specialized large-scale graph pro-
cessing platforms have been developed, which could be used
for graphical model inference. These include Apache Gi-
raph [3], GraphLab [4], and others. Since these systems are
tailored and optimized for iterative graph processing, they
generally outperform generic data processing platforms such
as Hadoop/Spark [5]. However, graph analytics is usually
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only one of several stages in an analytics workflow [6], and
deploying a specialized graph processing framework results
in large amounts of data movement and duplication. For this
reason, we build on top of GraphX [6], which provides a tight
integration with Apache Spark.

Other challenges relate to graph partitioning, representation
and optimizations for large memory machines. Most imple-
mentations of graphical model inference use a factor graph
representation, which although more generic, can double the
memory requirements and also increase the convergence time.
Further, it is important how the graphical model is partitioned.
Spark/GraphX perform a random hash partitioning which
result in both increased memory consumption and increased
communications. Lastly, runtime performance can benefit from
several optimizations for a large-memory machine.

In this paper, we design and implement a scalable version
of a graphical model inference algorithm called belief prop-
agation on Apache Spark/GraphX. While our work applies
to other inference methods such as Gibbs sampling, here we
focus on belief propagation. Our implementation has been
open-sourced and available on Github as Project Sandpiper [7].

We evaluate the performance of our implementation on
graphical models derived from synthetic and real data, includ-
ing a real graph containing billions of vertices. Furthermore,
we apply our method to a security use case, where we infer
the probability of a web site being malicious based on a large-
scale graphical model constructed from a web graph.

Specifically, we make the following main contributions:

« an open-source implementation of belief propagation that
scales to very large graphical models;

e a new graph partitioning algorithm that reduces memory
consumption by 2x, and improves BP run time by 2x over
random partitioning (currently used by Spark GraphX);

o Combining all our optimizations, we get a 10x speed-up
compared to a Vanilla Spark GraphX implementation on
the same hardware;

o performance evaluation using synthetic and real graphs'

e a security use case involving a graphical model with
billions of vertices and edges.

Inote that in this paper we use term graph in the context of a graphical
model, that is, the underlying graph in a graphical model.



II. BACKGROUND AND RELATED WORK
A. Graphical Model Inference

A probabilistic graphical model (PGM) [8] combines prob-
abilistic dependency and reasoning with graph theory. PGMs
provide a means to express and reason about dependencies
without making the problem intractable (e.g., assuming every
variable depends on all others), or making it too simplistic
(e.g., assuming all variables are independent). The graph
structure provides an elegant representation of the conditional
independence relationships between variables.

The most common methods of doing inference on PGMs are
(1) MCMC based methods [2], such as Gibbs sampling, and
(ii) variational methods [1], such as loopy belief propagation.
MCMC based techniques are known to be slow with high
mixing time, therefore requiring an large number of samples.
In this paper, we focus on a a variational method called loopy
belief propagation [9], a commonly used, message-passing
based algorithm for computing marginals of random variables
in a graphical model, such as a Markov Random Field. It
provides exact inference for trees, and approximate inference
for graphs with cycles (in which case it is referred to as loopy
belief propagation). Even though loopy belief propagation
is an approximate algorithm with no convergence guaran-
tees, it works well in practice for many applications [10].
Furthermore, compared to MCMC, loopy belief propagation
performs well on large scale, sparse graphical models, such as
those constructed from real life power law graphs including
the website graph derived from hyperlinks considered in the
security use case later in this paper.

B. Spark and GraphX

Apache Spark is a distributed data processing engine for
clusters [5]. Spark operates similarly to Hadoop MapReduce,
however Spark allows caching of intermediate results in mem-
ory for faster processing. Spark contains a number of built-
in libraries for supporting additional workloads, including
SQL, Machine Learning and Graph. The latter is implemented
in GraphX project [6]. GraphX provides bulk synchronous
parallel (BSP) scatter/gather API for message passing between
the vertices in the graph. Spark’s own MapReduce API is also
supported. GraphX contains implementations of several graph
algorithms, including triangle counting and PageRank. The
BSP message passing API combined with map and reduce
is useful for implementing various graph algorithms on a
large scale because it allows embarrassingly parallel process-
ing and alleviates the limitations of Pregel API. The other
benefit of using GraphX is its tight integration with Spark.
Graph processing in Spark is easily pipelined with the other
data processing steps, such as extraction, transformation and
loading of data and querying the result. Spark is being widely
adopted for big data processing. The above mentioned features
provide an advantage to GraphX compared to other graph
processing engines and libraries such as Apache Giraph [3],
Turi (ex-GraphLab) [4], and others. GraphX represents a graph
using RDDs of vertices, edges and the routing table for
replicated vertices. Some of the vertices are replicated because
graph is randomly partitioned using vertex cut [6]. While we
have developed our implementation of belief propagation on
GraphX, it is easily portable to GraphFrames, or a similar
graph processing system developed on top of Spark.

C. Graph partitioning

Graph partitioning has been studied widely in the litera-
ture [11]-[21] . They are broadly classified into edge-cut and
vertex-cut policies. Vertex-cut policies can yield more bal-
anced partitions than edge-cut policies, especially for power-
law graphs. hMetis [12] performs vertex-cut by transforming
the graph to an equivalent hypergraph (edges are converted
into vertices, and vertices into hyper-edges) and performing an
edge-cut on the hypergraph. PowerGraph [14] was the first to
propose an efficient single pass vertex-cut partitioning policy.
More recent vertex-cut policies, such as Least Incremental
Cost (LIC) [17] and PowerLyra [15], have been shown to per-
form better than that. We propose a new vertex-cut partitioning
policy motivated by them. All these policies stream edges
one-by-one (one or two passes) and then assign an edge to
a partition based on some heuristic. Once an edge is assigned
to a partition, they maintain some runtime state that reflects the
decision, which is then used to determine the assignment for
the rest of the edges. The policies only differ in the heuristics
used to determine the assignment of an edge to a partition.
The heuristics used in our policy yields better partitions, as
we shall see in Section I'V-B.

D. Malicious website detection

We apply our scalable implementation of belief propagation
to the problem of estimating the probability of a website being
malicious. Users accessing malicious websites are exposed to
several security threats such as phishing, malware, malicious
links, and spam. Thus detecting malicious sites to prevent
users from visiting them is an important problem which
has been widely studied in the past. Broadly, there are two
main approaches: 1) content-based, which uses website’s host,
domain, or web page information for detecting malicious sites.
For example, [22] extracts lexical features from URLs and
other features from host information (e.g. registration date,
owner, etc.) to build a classifier to detect malicious sites; and,
2) link/graph based, which leverages the link structure of the
web graph to detect malicious sites. Most of these use variants
of PageRank, e.g, TrustRank [23]. In [24], a graphical model is
built based on DNS requests, while in [25], both content based
and link/graph based features are used to train a classifier.
However, they do not address scalability of their algorithms.

III. PROPOSED METHODOLOGY

In our implementation of large-scale graph inferencing
we address the following requirements: scalability, efficient
graph representation, numerical stability and partitioning. We
estimate the scalability of the algorithm by considering the
complexity of computations and communications in the algo-
rithm. Belief propagation is implemented on top of Apache
Spark GraphX. Generalized graph representation is addressed
by using factor graphs. We also implement a simpler, more ef-
ficient representation, which can be used for pairwise models,
that is, graphical models where order of potential functions is
limited to two. Numerical stability is handled by the use of
logarithmic domain for computations. We propose a greedy
partitioning algorithm that minimizes the communication over-
head required to update the state of partitioned graph.



factor  EXN

1.0

prior

(a) Factor graph representation

(b) Pairwise graph representation

Fig. 1: Example of a graphical model.

A. Scalability Modeling

We estimate the algorithm scalability by considering the
amount of communication and computation it requires if
implemented in Spark. Spark follows the bulk synchronous
parallel model of data processing. The time of one itera-
tion consists of computation and communication times. We
have derived the iteration time of Belief Propagation in
our recent work [26]. The computation time complexity is:
tep = maxicp p) (Ei)/(F-n)- (S+2-(S+52)), where n is
the number of computationally equal workers with F' FLOPS;
S number of states; max;cp1,n)(E;) is the computing device
(partition) with maximum number of edges E;. The commu-
nication time complexity is: te, = 32/B -r -V - S, where
B is the connection bandwidth between workers; 32 is the
number of bits per state; r is the replication factor; V' is the
total number of vertices.

According to the proposed model, the communication is
proportional to the number of vertices and the replication
factor. Per-vertex computation is relatively inexpensive, if the
number of states in graphical model is small. The maximum
scalability is reached when computation time is equal to
communication time.

B. Generalized graph representation

The generic representation of a graphical model is a fac-
tor graph as shown in Figure la. Variables and factors are
represented as vertices. Thus the number of variables is the
sum of variables and factors. Priors are also factors, but for
the sake of simplicity they can be merged with the vertices
that represent variables. Edges represent interaction between
variables and factors. A factor graph can be converted to a
pairwise representation, as shown in Figure 1b. The conversion
reduces the number of vertices to the number of variables if the
original factors are pairwise. Therefore, such representation
requires less memory and is appropriate if the original model
is itself pairwise. In particular, vertex represents a variable and
edge represents a factor.

C. Numerical stability

We store all values in log form and implement computations
in log domain in order to prevent underflow. There are three
types of computations in the original domain: multiplication,
division, and normalization. Multiplication is needed for com-
puting conditional probabilities. Division is needed to remove
the values of the incoming message from the belief. These two
operations are translated to summation and subtraction in log
domain: log(x - y) = log x + log y;log(x/y) = logz — log y.

Normalization involves summation of values in the original
domain. It is possible to factor out the largest value to prevent

overflow? (assuming that x > y): log(z+vy) = log z+log(1+
6log yflogz).

D. Partitioning

Any large-scale graph processing requires a distributed
implementation and hence partitioning of the graph. We now
describe our proposed graph partitioning scheme. The input to
our partitioner is an unordered list of edges and nodes. The
data on the nodes and edges is ignored because our technique
is algorithm and data agnostic. We also compute the degree of
each vertex and determine if the vertex is low-degree or high-
degree based on a tunable threshold. This information is then
used by our heuristic. Motivated by Least Incremental Cost
(LIC) [17] and PowerLyra [15], we design a greedy vertex-
cut partitioning heuristic that minimizes the expected cost of
partitioning. Specifically, these are the metrics that it tries to
minimize, in the order of higher to lower priority:

o Number of vertices that are replicated.

« Total number of low-degree vertices (including replicas).

« Total number of high-degree vertices (including replicas).

¢ Difference between maximum and minimum load, mea-
sured in the number of edges, of all partitions.

We term our partitioning policy as Least low-Degree Incre-
mental Cost (LDIC) since it prioritizes avoiding replication of
low-degree vertices over that of high-degree vertices.

LDIC chooses the set of candidate partitions for an edge:

« Partitions that contain replicas of both incident vertices,
if it exists.

o Otherwise, if one of the incident vertices is low-degree
and the other high-degree, partitions that contain replicas
of the low-degree vertex, if it exists.

o Otherwise, partitions that contain at least one of the
vertices, if it exists.

o Otherwise, all the partitions.

Once the candidate partitions are chosen, the edge is assigned
to the least loaded one among them and replicas are created
for the incident vertices on that partition.

LDIC partitioning policy prioritizes reducing replication
over maintaining load balance. Similar to LIC, for each edge,
it first determines the candidate partitions that minimize repli-
cation the most. However, unlike LIC, it prioritizes minimizing
replication of low-degree vertices over that of high-degree
vertices. It then assigns the edge to the least loaded partition
among the candidates. Although PowerLyra has a similar goal,
it does not consider the load of a partition. Moreover, it
does not handle symmetric or undirected graphs well since
it explicitly considers the direction of an edge, whereas our
policy is agnostic to the direction of an edge.

E. In-memory Optimization

Spark is gaining widespread adoption for large-scale work-
loads as an in-memory analytics platform. Today, running
large-scale iterative, memory intensive workloads, such as BP,
is still inefficient mainly due to unnecessary communication
and memory inefficiencies in the Java heap. Given the growing
availability of affordable scale-up servers, we have leveraged
performance benefits from in-memory processing on shared
memory of scale-up servers to data analytics applications

2For derivation see http://colorfulengineering.org/logmath-notes.pdf



TABLE I: Pairwise BP experiment results

TABLE II: Factor graph BP experiment results

Fig. 2: BP with in-memory optimization on Sparkle

and designed and implemented an enhanced Spark, called
Sparkle [27]-[29]. Sparkle leverages the large shared memory
in scale-up systems to optimize Spark’s performance for
communication and memory intensive workloads. Figure 2
shows our BP implementation with in-memory optimizations
using shared memory in Sparkle.

IV. EXPERIMENTS

We performed a series of experiments to evaluate the
scalability of our implementation of BP and to demonstrate
its applicability to a real-world use case. The performance is
evaluated in terms of the iteration times and space usage of
our BP implementation depending on the graph size and graph
representation. We also performed experiments to measure the
effectiveness of our proposed partitioning algorithm, LDIC,
which can be used to partition any graph, and not just graphical
models that are considered here.

Our experimental platform is Superdome X with 240 cores
and 12 TB DRAM across 16 NUMA nodes (sockets). Each
worker process is bound to the CPU and memory of a NUMA
node. We used Spark 1.6.1 with 8 up to 45 workers, and 32
GB up to 164 GB RAM for the JVM memory. For Spark
shuffling, we used TMPFS bound to a NUMA node to store the
shuffle data and TCP/IP communication. For the in-memory
optimized Sparkle experiments, we used the shared-memory
shuffle engine for shuffling and off-heap memory store for
caching.

We ran our experiments on graphical models with varying
number of vertices and edges with the largest model containing
1.9 billion vertices and 3.5 billion edges. Two of these, the
largest one and the one with 101.7 million vertices and 1.75
billion edges are derived from real-world web graph obtained
from Web Data Commons [30], [31]. It is the hyperlinked
graph obtained from a web crawl conducted by Common
Crawl in August 2012 [32]. All the other graphical models
were generated synthetically from a real graphical model based
on DNS data such that basic properties like degree distribution
and factor potentials were preserved [33]. The graphs used in
our experiments are shown in Tables I and II.

Vertices Edges Size on | Size in | Iteration Number Vertices Edges Size on | Size in | Iteration Number
TMPFS JVM time of itera- TMPFS JVM time of itera-
memory (sec) tions memory (sec) tions
0.2M 0.7M 0.03GB 0.4GB 4 8 0.9M 1.4M 0.05GB 1.2GB 1.3 14
1.6M 8.9M 0.3GB 5.2GB 16.8 8 10.7M 18M 0.6GB 13GB 21.8 15
16.2M 99.3M 5.4GB 59.7GB 25.3 8 115.5M 198.5M 6.9GB 1542GB | 33.5 16
101.7M 1.75B 64GB 840.5GB | 132 20 1.9B 3.5B 118GB 2.5TB 600 40
A. Iteration time and space usage
GraphX . . . . .
Spark Core In this section, we compare the iteration time and space
TR usage (for both TMPFS and JVM memory) of BP for graphs of
BP || Shuffle Shuffle Engine — varying sizes, using the two different representations. TMPFS
: Off-heap " memory is used to store shuffle data.
Memory Store In Table I, which summarizes results for pairwise represen-
tation, we see the iteration time and space usage increase with

the size of graph (also shown in Figure 3) Here the increase is
close to linear. Note that the web graph (101.7M/1.75B) takes
more number of iterations for convergence (20) than the others.
While in general it is hard to say how many iterations BP will
take to converge (or if it will converge at all), in practice it
usually converges in a small number of iterations (10-20).
Table II shows results for factor graph representation. As the
graph size increases, both iteration time and space usage for
factor graphs increase more steeply than for pairwise graph
(see Table II and Figure I).

B. Partitioning

In this section, we first show that our LDIC policy yields
better partitions than the existing state-of-the-art and then show
the impact of LDIC policy on the performance of BP.

We statically analyze LDIC and compare it with exist-
ing partitioning policies: random (used in Spark), Power-
Graph [14], PowerLyra [15], and LIC [17]. We partition an
undirected graph with 162 million vertices and 1 billion edges
into 64 partitions using the different policies. To estimate the
communication volume required for the resulting partitions,
we measure the replication factor (mean number of replicas
per vertex) and the number of vertices that are replicated,
shown in Figure 4. Among the existing policies, LIC has
the lowest replication factor but it replicates more vertices
than PowerLyra since it replicates more low-degree vertices.
PowerLyra replicates the lowest number of vertices but has
a higher replication factor than LIC since it creates more
replicas for high-degree vertices. Our LDIC policy is the best
in both reducing the number of replicated vertices and the
replication factor. To measure the load balance, we measure
the minimum and maximum number of edges assigned to a
partition. PowerGraph and PowerLyra has 5% and 10% more
edges in the maximum loaded partition than the minimum
loaded one, while the rest, including LDIC, have less than
1%. This shows that LDIC partitioning policy minimizes
communication volume while balancing the load.

We compared the iteration time for our pairwise BP with
101.7M/1.75B graph using the LDIC partitioning vs. random
partitioning which is the Spark’s default partitioning. As
expected, the LDIC partitioning improves the iteration time
almost 2x (132 vs. 247 sec, for LDIC vs. random partitioning).
This gain is due to reducing shuffle data and the shuffle
operation is one of the bottlenecks in Spark’s BSP.



- 7
3 6
b 5
é 100 /’ : N
= -~ N
S 10 / —e—Pairwise 2 I I
T —— 1
k5 o Factor o
= 1 Random  PowerGraph PowerLyra
0.1 1 10 100 1000 10000
Edges, Millions

== Mean replicas per vertex, replication factor
Number of vertices that are replicated, percent

—e—Vanilla
Shuffle+offheap

SuperBP

8
N
al
o

(se0)

St
N
o
o

60%
50%

.
a
o

30%

20%
10%
0%

LDIC

=
o
=]

Iteration time
o
=]

o

Lic

©

16 24 32 40
Number of workers

Fig. 3: BP iteration time on various Fig. 4: Comparison of replication in Fig. 5: BP iteration times on the

graphs

9
M Vanilla ® Shuffle+offheap SuperBP @®g
140 g 7 W Heap
3 120 S
3 < m Offheap
— 100 <5
o o
£ 80 4
§w 3
5 40 £2
£ 20 | 21 ‘ ]
o | 0 —
101.7M/1.758B 1.98/3.5B Vanilla Shuffle+ SuperBP
Vertices/Edges offheap
(@ (b)

Fig. 6: (a) BP iteration times evaluated on two different graph
sizes; (b) BP Memory usage on the 101.7M/1.75B graph

C. Strong scaling and memory optimization

In this section, we present how in-memory optimization
in our BP implementation improves its performance. We
use pairwise graph representation in these experiments. We
compare vanilla BP (no modifications) with our in-memory
optimized BP.

We conducted experiments with different variants of in-
memory optimization. The first variant uses the shared mem-
ory shuffle engine for the shuffle operation and the off-heap
memory store for data caching. We call this Shuffle+offheap.
We further optimized this implementation (Shuffle+offheap)
by taking advantage of the globally visible data structures
in the off-heap memory store, by consolidating two shuffle
stages into one single stage (out of the total three stages in
one iteration), and replacing Scala with C++ implementation
for the cpu-intensive message computation. We call this second
variant SuperBP.

We used the two largest graphs, 101.7M/1.75B and
1.9B/3.5B for these and found that benefits from Sparkle get
bigger as the graph size is larger since larger graphs have
higher memory consumption and consequently more frequent
calls to garbage collector.

As expected, our in-memory optimized BP implementations
dramatically improve the performance for both iteration time
and memory usage. BP with Shuffle+offheap is 3x and Su-
perBP is 10x faster than BP with vanilla Spark in iteration
time (see Figure 6a). Note that only SuperBP is able to run
on the 1.9B/3.5B graph; the others run out of memory.

Figure 6b shows memory usage of the three variants of BP
on the 101.7M/1.75B graph. While the Vanilla BP uses only
JVM heap memory, Shuffle+offtheap BP and SuperBP use off-
heap memory for shuffle and data caching. As shown in the
figure, the memory usage in our in-memory optimized BP is
dramatically reduced since using the off-heap memory allows
more compact data representation eliminating the overhead
of Java objects. Note that Shuffle+offheap BP uses a bit of

various partitioning schemes

101.7M/1.75B graph

heap memory to store the input graph while SuperBP uses the
off-heap memory for input graph as well as shuffle and data
caching.

Figure 5 shows how the three variants of BP scale with
increasing number of workers on the 101.7M/1.75B graph. As
shown in the figure, the iteration time of BP with vanilla Spark
decreases with adding more workers while the in-memory
optimized BP does not benefit as much. Overall it shows our
in-memory optimized BP runs with much smaller resources
but better performance.

D. Large Scale BP Use Case: Malicious Websites Detection

In order to determine a maliciousness score of a website, we
leveraged hyperlinked web graph data together with blacklists
and whitelists of domains.

We used a real, large-scale web graph for this use case. We
derived it from the web graph available at Web Data Com-
mons [30], based on the Common Crawl data [32]. The graph
is from a August 2012 crawl [31] and contains web graphs at
three different granularities, namely where vertices are web
pages, web hosts, or web domains. For this particular use
case we looked at the web hosts graph. After pre-processing
the raw graph, we transformed it into a Markov random field
(MRF) with 101.7 million vertices and 1.75 billion edges. The
vertices in the MRF represent random variables indicating the
probability of that host being malicious. The edges, determined
by the hyperlinks, represent the relationships between the hosts
parameterized by the edge potential.

We exploit the concept of homophily, that is, entities like to
be associated with similar entities. In the context of the web
graph, this implies that benign sites are likely to have hyper-
links to other benign sites, while malicious sites are likely to
have hyperlinks to other malicious sites. In particular, we used
high edge potentials for benign—benign links, and malicious—
malicious links; very low potential for benign—malicious links,
since good sites are unlikely to link to malicious ones; and,
moderate potential for malicious—benign, since malicious sites
may also link to good sites, in addition to other malicious ones.

Since the web graph is from August 2012, we used
archive.org to obtain blacklists [34] from that time period. We
used the one million most visited sites compiled by Alexa [35]
as a proxy for a whitelist. Again we used archive.org to
get the list from the same time period. Both these lists
contained domain names while our graph had host names.
After processing and matching the sites in these lists with the
sites in the host web graph, there was an overlap of 17.8 M
hosts in the graph with the whitelist domains, and 930 K hosts
matched with domains in the blacklists. This information was
used to populate the node priors of the MRF. All the vertices
(hosts) that had no match were assigned a uniform prior.



We use the pairwise graph representation for the MRF with
the following parameters: maximum number of iterations — 50,
epsilon — 1le — 3 (used to determine convergence). Once all
the parameters are determined, we run belief propagation on
the graphical model to infer the marginal probability of all the
vertices (hosts), which would be an estimate of a maliciousness
score of the host.

Belief propagation converged in 20 iterations in about 250
seconds. We ranked the nodes based on their marginals. It
is challenging to validate the results since the web graph is
from several years ago (and malicious sites are quite dynamic).
Even though thorough validation proved impractical, we qual-
itatively validated the results by having an expert manually
examine a sample of the top malicious sites discovered. We
were able to retrieve a good percentage of the top 100
discovered malicious sites from common crawl. Examination
of these pages found that a large number of these sites either
had inappropriate content, spam links, or misleading content
(e.g., links did not match content).

V. CONCLUSION

Graphical model inference algorithms such as loopy belief
propagation are widely used, but are not very scalable. We
designed and implemented a scalable version of BP on Apache
Spark GraphX, that scales to billions of vertices without
requiring a specialized graph processing platform (and the
associated data copying and migration). The main components
of our approach are: efficient graph partitioning, concise rep-
resentation, and leveraging in-memory optimizations for large
memory machines. Our experiments show our partitioning
algorithm provides a 2x speed-up, while with all optimiza-
tions combined we obtain a 10x speed-up over vanilla Spark
GraphX. We present a large scale use case for estimating
maliciousness of web sites using a graphical model constructed
from a hyperlinked web graph. We have open sourced our
implementation as project Sandpiper [7].
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