
Incorporating Prior Domain Knowledge into Deep Neural Networks

Nikhil Muralidhar∗‡◦, Mohammad Raihanul Islam∗‡◦, Manish Marwah+,
Anuj Karpatne∗‡, and Naren Ramakrishnan∗‡

∗Department of Computer Science, Virginia Tech, VA, USA
‡Discovery Analytics Center, Virginia Tech, USA

+Micro Focus, Sunnyvale, CA, USA
Email: {nik90, raihan8, karpatne, naren}@cs.vt.edu, manish.marwah@gmail.com

◦(equal contribution)

Abstract—In recent years, the large amount of labeled data
available has also helped tend research toward using minimal
domain knowledge, e.g., in deep neural network research.
However, in many situations, data is limited and of poor
quality. Can domain knowledge be useful in such a setting?
In this paper, we propose domain adapted neural networks
(DANN) to explore how domain knowledge can be integrated
into model training for deep networks. In particular, we
incorporate loss terms for knowledge available as monotonicity
constraints and approximation constraints. We evaluate our
model on both synthetic data generated using the popular
Bohachevsky function and a real-world dataset for predicting
oxygen solubility in water. In both situations, we find that
our DANN model outperforms its domain-agnostic counterpart
yielding an overall mean performance improvement of 19.5%
with a worst- and best-case performance improvement of 4%
and 42.7%, respectively.

Keywords-Noisy Data; Domain Knowledge; Neural Networks;
Deep Learning; Limited Training Data;

I. INTRODUCTION

Deep learning has witnessed tremendous success in recent
years in areas such as computer vision [1], natural language
understanding [2], and game playing [3]. In each of these
areas, considerable improvements have been made in tasks
such as image recognition [4], machine translation [5], [6],
and in games such as Go where top human players have
been roundly defeated [7].
A common philosophy behind these machine learning suc-
cesses has been use of end-to-end models with minimally
processed input features and minimal use of domain or
innate knowledge1, so as not to introduce user bias into the
system; and, instead let the models learn mostly from data,
in contrast to the past where domain knowledge played a
central role in engineering model features.
There is an ongoing debate [8] on how much domain
knowledge is necessary for efficient learning. At one extreme
is “blank slate” (or tabula rasa) learning where no domain
knowledge is assumed a priori and everything is induced
from data, including model structure and hyperparameters.

1We use the terms domain knowledge or innate knowledge interchange-
ably here to refer to anything not learned using data.

Figure 1: Advantages of hybrid models like domain
adapted neural networks (DANN) as opposed to using
purely inductive or purely domain based models.

At the other end is the approach where everything is man-
ually hard-wired based on domain expertise with little help
from data.
While researchers agree that these extremes lead to poor
models, it is unclear where the sweet spot lies. In deep
learning, domain knowledge often contributes to selection of
network architecture. The most successful example of this
idea pertains to the use of convolutional neural networks for
tasks involving images or videos, because images exhibit
translational invariance. Similarly, recurrent neural networks
are preferred for data with sequential structure. However, in
these situations, large amounts of training data are available.
What about cases where data may be limited or sparse2 (i.e.
limited training data that is not fully representative of the
entire data distribution) and of poor quality? In fact, while
in general data has become abundant in recent years, there
are several applications where sufficient and representative
data is hard to come by for building machine learning
models, e.g., in modeling of physical processes in critical
infrastructure such as power plants or nuclear reactors.
There are several impediments in collecting data from such
systems: 1) limited data: data available is limited in terms

2Note that we use the terms limited data and sparse data interchangeably
here.

of feature coverage since these systems typically run in an
operationally optimized setting and to collect data outside
this narrow range is usually expensive or even unsafe, if at all
possible; 2) expensive data: in some instances, for example
manufacturing facilities, collection of data may be disruptive
or require destructive measurements; 3) poor quality data:
quality of data collected from physical infrastructure systems
is usually poor (e.g., missing, corrupted, or noisy data) since
they typically have old and legacy components.
We posit that in these situations, model performance can
be significantly improved by integrating domain knowledge,
which might readily be available for these physical processes
in the form of physical models, constraints, dependencies
relationships, and knowledge of valid ranges of features. In
particular, we ask:

1) When data is limited or noisy, can model performance
be improved by incorporation of domain knowledge?

2) When data is expensive, can satisfactory model per-
formance be achieved with reduced data sizes through
incorporation of domain knowledge?

To address these questions, in this paper, we propose
DANN (domain adapted neural networks), where domain-
based constraints are integrated into the training process. As
shown in Fig. 1, DANN attempts to find a balance between
inductive loss and domain loss. Specifically, we address the
problem of incorporating monotonic relationships between
process variables (monotonicity constraints [9]) as well as
incorporating knowledge relating to the normal quantitative
range of operation of process variables (approximation con-
straints [9]). We also study the change in model performance
when multiple domain constraints are incorporated into the
learning model. In each case, we show that our proposed
domain adapted neural network model is able to achieve
significant performance improvements over domain agnostic
models.
Our main contributions are as follows:

1) We propose DANN which augments the methodology
in [10] to incorporate both monotonicity constraints
and approximation constraints in the training of deep
neural networks.

2) We conduct a rigorous analysis by characterizing the
performance of domain based models with increasing
data corruption and decreasing training data size on
synthetic and real data sets.

3) Finally, we also showcase the effect of incorporating
multiple domain constraints into the training process
of a single learning model.

II. RELATED WORK

In recent times, with the permeation of machine learning
into various physical sciences, there has been an increas-
ing attempt to leverage the power of learning models to
augment, simplify experimentation and otherwise replace

costly simulations in these fields. However, owing to the
underlying complexity of the function space and the cor-
responding lack of representative datasets, there have been
a number of attempts at incorporating already existing
domain knowledge about a system into a machine learning
framework or to overcome drawbacks of existing simulation
frameworks using mahcine learning models. In [11], the au-
thors utilize a stacked generalization approach to incorporate
domain knowledge into a logistic regression classifier for
predicting 30 day hospital readmission. In [12], the authors
utilize random forests for reconstructing discrepancies in
a Reynolds-Averaged Navier-Stokes system (RANS) for
modeling industrial fluid flows. It is a well known problem
that the predictive capabilities of RANS models exhibit
large discrepancies. Wang et al. try to reconstruct these
discrepancies through generalization of machine learning
models in contexts where data is not available. There have
also been efforts to utilize machine learning techniques to
quantify and reduce model-form uncertainty in decisions
made by physics driven simulation models. In [13], [14]
the authors achieve this goal using a Bayesian network
modeling approach incorporating physics-based priors. From
a Bayesian perspective, our approach to integrating domain
knowledge into the loss function is equivalent to adding it
as a prior.
In addition to incorporating domain knowledge, there have
also been attempts to develop models that are capable
of performing more fundamental operations like sequential
number counting, and other related tasks which require the
system to generalize beyond the data presented during the
training phase. Trask et al. [15] propose a new deep learning
computational unit called the Neural Arithmetic Logic Unit
(NALU) which is designed to perform arithmetic operations
like addition, subtraction, multiplication, division, exponen-
tiation etc. and posit that NALUs help vastly improve the
generalization capabilities of deep learning models. Another
related research work is the paper by Arabshahi et al. [16]
in which the authors employ black-box function evaluations
and incorporate domain knowledge through symbolic ex-
pressions that define relationships between the given func-
tions using tree LSTMs. Bongard et al. [17] propose the
inverse problem of uncovering domain knowledge given
time-series data in a framework for automatically reverse-
engineering the functioning of a system. Their model learns
domain rules through the intrusive approach of intelligently
perturbing the operation of a system and analyzing the
resulting consequences. In addition, they assume that all the
data variables are available for observation which is quite
often not the case in many machine learning and physical
system settings.
Mustafa in [9] proposes a framework for learning from
hints in inductive learning systems. The proposed framework
incorporates different types of hints using a data assimilation
process wherein data is generated in accordance with a

particular domain rule and fed into a machine learning model
as an extension of the normal training process. Each such
domain based data point is considered one of the hints that
guides the model toward more domain amenable solutions.
Generating data that is truly representative of a particu-
lar piece of innate knowledge without overtly biasing the
model is costly and non-trivial. Also, as stated in [9],
direct implementation of hints in the learning process is
much more beneficial than are methods of incorporating
domain knowledge through data assimilation. Hence, we
develop methods wherein innate knowledge about a system
is directly incorporated into the learning process and not
through external costly means like data assimilation. We
show that incorporating domain constraints directly into the
loss function can be used to greatly improve model quality
of a learning algorithm like a deep neural network (NN)
even if it is trained using a sparse, noisy dataset that is
not completely representative of the spectrum of operational
characteristics of a system.
Research closest to ours has been conducted by Karpatne
et al. [10]. Here, the authors propose a physics guided
neural network model for modeling lake temperature. They
utilize the increasing monotonic relationship of water density
measurements with increasing depth as the physical domain
knowledge that is incorporated into the loss function. They
predict the density of water in a lake at different depths and
utilize the predicted densities to calculate the corresponding
water temperature at those depths using a well established
physical relationship between water temperature and density.
However, they incorporate only a single type of domain
knowledge (i.e., monotonic relationships). In this work, we
have augmented the approach in [10] to model other types
of domain rules and characterize model behavior in many
challenging circumstances (to be detailed in later sections).

III. PROBLEM FORMULATION AND SOLUTION
APPROACH

Problem Statement: Leverage domain knowledge to train
a robust, accurate learning model that yields good model
performance even with sparse, noisy training data.
Innate knowledge about the functioning of a system S may
be available in several forms. One of the most common
forms of knowledge is a quantitative range of normal oper-
ation for a particular process variable Y in S. Another type
of domain knowledge could be incorporating monotonically
increasing or decreasing relationships between different pro-
cess variables or measurements of the same process variable
taken in different contexts. To incorporate these domain
based constraints into the inductive learning process, we
develop domain adapted neural networks (DANN).
We select deep neural network models as the inductive
learner owing to their ability to model complex relationships
and adopt the framework proposed in [10] for incorporating

domain knowledge in the training of deep neural network
models.
The generic hybrid loss function of the deep learning model
is depicted in Eqn. 1. Here, Loss(Y; Ŷ) is a mean squared
error loss used in many inductive learning applications for
regression and Y , Ŷ are the ground-truth and predicted
values, respectively, of the target system variable. R(f) is an
L2 regularization term used to control model complexity of
the model f . The LossD(Ŷ) term is the domain loss directly
incorporated into the neural network loss function used to
enforce that the model learned from training data is also in
accordance with certain accepted domain rules.

argmin
f

Loss(Y; Ŷ) + �DLossD(Ŷ) + �R(f) (1)

Here �D is a hyper-parameter determining the weight of
domain loss in the objective function. We chose the value
of �D empirically (see Fig. 3). � is another hyper-parameter
determining the weight of the regularizer. We model two
types of constraints: 1) Approximation Constraints; and, 2)
Monotonicity Constraints.

A. Approximation Constraints

Noisy measurements quite often cause significant deviation
in model quality. In such cases, the insights domain experts
possess about reasonable ranges of normal operation of the
target variable could help in training higher quality models.
We wish to incorporate these approximation constraints
during model training, to produce more robust models.
Such constraints may be specified as a quantitative range
of operation of the target variable Y . Let (yl; yu) be the
range of normal operation of a particular target variable
Y ∈ Rm×1, i.e., Y ∈ [yl; yu] (yl; yu can be provided by
a domain expert or estimated empirically). Then, g(Ŷ) in
Eqn. 2 represents the functional form of the approximation
constraint while Eqn. 3 depicts how we incorporate g(Ŷ)
directly into the training loss function of a deep feed-forward
neural network.

g(Ŷ) =

8><>:
0 if Ŷ ∈ [yl; yu]

|yl − Ŷ | if Ŷ < yl

|yu − Ŷ | if Ŷ > yu

(2)

LossD(Ŷ) =

mX
i=1

ReLU(yl − yi) +ReLU(yi − yu) (3)

ReLU(z) = z+ = max(0; z) (4)

A ReLU term is appropriate here as its output is non-zero
when the input is positive and thus suitable for modeling the
constraints.

B. Monotonicity Constraint

Physical, chemical, and biological processes quite often have
facets which are related monotonically. Let x1; x2 represent

measurements of a single phenomenon in different contexts
in a system (e.g., x1, x2 could be pressure at different
heights, air temperature at different times of the day). If we
consider a function h(x) = y such that x1 > x2 ⇒ h(x1) >
h(x2), then x1, x2 and h(x1), h(x2) are said to share a
monotonic relationship. We can incorporate such monotonic-
ity constraints using the formulation represented in Eqn. 5.
Here, LossD(Ŷ1; Ŷ2) represents the domain loss calculated
by enforcing the monotonicity constraint Ŷ1 < Ŷ2.
In Eqn. 5, I(·) represents the identity function which eval-
uates to true if the result of the logical AND (∧) opera-
tion evaluates to true and is false otherwise. The identity
function essentially serves to produce a boolean mask of
cases where measurements obey the monotonicity constraint
being enforced while the predictions by the neural network
model violate the constraint. Applying this mask to the
ReLU function (described in Eqn. 4) allows us to capture
errors only of the instances wherein the domain constraint
is violated. Formulating the domain loss LossD(·) in this
manner causes the model to change course to a region in
the (learned) function space more amenable to the injected
domain constraint.

LossD(Ŷ1; Ŷ2) =
mX
i=1

I
�

(xi1 < xi2) ∧ (ŷi1 > ŷi2)

�
·ReLU(ŷi1 − ŷi2) (5)

IV. DATASET DESCRIPTION

A. Synthetic Datasets

We use the popular Bohachevsky function as the basis for
generating synthetic datasets to evaluate the effectiveness
of incorporating domain knowledge in our experiments. A
Bohachevsky function is typically given by an expression
similar to Eqn. 6. In our experiments we use a variant with
positive amplitudes for the cosine functions i.e a1 = 0:3,
a2 = 0:4. Similarly, we set p1 = 3, p2 = 4 and k1 = 1,
k2 = 2;K = 0:7.

f(x1; x2) = k1x
2
1 + k2x

2
2 + a1 cos(p1�x1)+

a2 cos(p2�x2) +K
(6)

The values of x1, x2 are randomly sampled positive values
from a normal distribution. We sample m values each of
x1 and x2 to form our input data vector X ∈ Rm×2. For
each row xi ∈ R1×2 in X, we generate the corresponding
target value yi using Eqn. 6 to form our target vector Y ∈
Rm×1. The dataset X;Y is used for experiments involving
approximation constraints.
In order to conduct experiments to test the effectiveness of
incorporating monotonicity constraints, we create two more
synthetic datasets X ′, X ′′ such that each x′i;1 = 6xi;1,
x′′i;1 = 12xi;1. Hence, for the monotonicity constraint
experiments, we generate three datasets X;X ′; X ′′ such that

xi;1 < x′i;1 < x′′i;1 and the outputs calculated for X;X ′; X ′′

using Eqn. 6 are Y; Y ′; Y ′′ respectively with yi < y′i < y′′i .

B. Real Datasets

We also demonstrate the performance of our models on a
real-world application for prediction of oxygen solubility
in water. The solubility of oxygen in water is primarily
governed by three factors, the water temperature, salinity
and pressure. We obtained temperature (t), salinity (s) and
pressure (p) samples for the North Atlantic and Iceland
Basin Biofloat 483. This data is then used to calculate
the amount of dissolved O2 (f(p; s; t)) using the physical
relationship detailed in Eqn. 7. We also compute the amount
of O2 solubility by increasing the pressure by 5.0 decibar
and 10.0 decibar while keeping the temperature and salinity
levels the same, thus once again obtaining three datasets
X;X ′; X ′′ and X(p) < X ′(p) < X ′′(p).

f1 = �1 + �2 (100=t) + �3 ln(t=100) − �4 (t=100)

f2 = f1 + s(−�5 + �6 (t=100) − �7 ((t=100)2))

f(p; s; t) = ef2 (p=100)

(7)

Here �1–�7 are the constant terms. These terms are defined
by researchers who measured the O2 solubility by empirical
evaluation.

V. EXPERIMENTAL FINDINGS

Objective: We test our DANN framework on Monotonicity
and Approximation constraints by trying to answer two
questions:

1) How well does DANN perform when available training
data is noisy?

2) Can DANN perform well even if it is trained with
limited training data?

A. Performance With approximation constraints in sparse
and noisy contexts.

Experimental Setup: For the purposes of this experiment,
we consider the dataset X ∈ Rm×2 as defined in section
IV-A. Each row xi of X can be denoted as xi = [xi;1; xi;2].
The values of x1 and x2 in each row are then used to
calculate the corresponding output function value f(x1; x2)
as described in Eqn. 6 to yield Y ∈ Rm×1. It must be
noted that for the purposes of this experiment, x1 and x2
are randomly sampled and x1 ∈ N (5; 1), x2 ∈ N (20; 1).
The location and scale for random sampling were chosen
arbitrarily, ensuring only that x1 and x2 distributions were
distinct.
Imputing Noise: We randomly select a subset of rows
in X and interchange the values of x1 and x2 in those
rows leading to the calculated value of f(x1; x2) in Y for
those rows being outside an expert-determined approximate
normal range. This is done to intentionally corrupt a subset

3https://www.bco-dmo.org/dataset/3426

(a) Approximation Constraint - Noise Percentage vs. RMSE (b) Approximation Constraint - Train Percentage vs. RMSE

Figure 2: Comparison betweenDANN and NN in noisy validation experiments indicates that theDANN model
signi�cantly outperforms the vanilla NN model both in the case of varying the amount of training data available as
well as the noise percentage of the training data. In Fig. 2a, we varied the noise percentage(�) from 10% to 50%
while keeping the percentage of training data used constant at 30%. In Fig. 2b, we similarly varied the training
data percentage while keeping the noise percentage constant at� = 30%.

of the dataset where the imposed domain constraint is
violated. Let us term the percentage of rows sampled for
such corruption as� (a.k.a. noise percentage). We vary�
from 10% –50% of the total size (m rows) of the datasetX
in order to evaluate the performance ofDANN augmented
with an approximation constraint on increasingly noisy
data. At the end of this noise imputation stage, we have
X 2 Rm � 2; Y 2 Rm � 2 where� % of rows inY are outside
the expert suggested approximation constraint i.e� % of rows
in Y violate the constraint.

Approximation Constraint Injection: In order to inject the
approximation constraint detailed in Eqn. 2 and Eqn. 3 into
DANN, it is �rst required for a domain expert to provide a
range of normal operation of the prediction variable i.eY
in our case. For this, we considered a subset of clean data
from Y before corruption and evaluated the mean (�) and
standard deviation (�). The range of normal operation i.e.
the approximation constraint was chosen as[� � �; � + �].

Model Architecture: We compareDANN with a standard
feed-forwardNN. In order to ensure fair comparison, both
networks employ the same network architecture with two
hidden layers where the �rst layer has a size of 64 units and
the second layer has a size of 128 units. We apply anl2
regularization on both models to curtail model complexity.
Both models were trained for a standard 200 epochs with
a learning rate of 0.001. The difference between theDANN
model and theNN model is that theDANN model incor-
porates the approximation constraint directly into the loss
function during training while theNN model does not.

Evaluation Strategy: We employ a 60-20-20 split for train-
ing, validation, and testing respectively. We use the RMSE
score which calculates the prediction error using predictions

Figure 3:RMSE score for different values of � D (lower
the better). Results shown are for noise-free model
selection. We infer from the �gure that � D = 1 :0 results
in the best performance. Therefore, we set� D = 1 :0
for DANN.

Ŷ and target valuesY to evaluate model performance. The
model is trained for the aforementioned 200 epochs and the
best model is then selected based on the performance on
the validation set. We then compute the performance of the
selected model on the test set and report it. The test set
is always noise-free. Noise-free in this context implies that
none of theY values in the test set violate the approximation
constraint.
Evaluation on two Validation Sets: The quality of the
validation set in�uences the model selection signi�cantly.
Hence, two types of validation experiments have been per-
formed, i.e., we validate the model on a validation set with
noisy data (i.e. corrupted data) and separately on a validation

set with noise-free data.
� Noisy Model Selection:Model selection is done using

a noisy validation set.
� Noise-Free Model Selection:Model selection is done

using a noisy-free validation set
Discussion of Results:We evaluated our DANN model
using approximation constraints and the results are de-
picted in Fig. 2a and 2b. Fig. 2a shows the comparative
performance of the DANN model relative to the domain
knowledge agnostic neural network (NN) model at different
levels of data corruption (�). We vary the percentage of
data corruption from 10%–50% and observe that the DANN
model outperforms the NN model signi�cantly in all cases.
We observe an expected upward trend of both models
with increasing� with a signi�cant increase at� = 30%.
The DANN model shows a mean percentage improvement
of 14.67% over the domain agnosticNN model. We see that
even at extreme noise levels close to� = 50%, theDANN
model signi�cantly outperforms theNN model.
We also study the characteristics of theDANN and NN
models in sparse data settings by varying the available
data used to train the models from 10%–50% and observe
once again thatDANN comfortably outperforms the domain-
agnosticNN model with a mean percentage improvement
of 22.98%. In fact, we observe in Fig. 2b that theDANN
model is able to incorporate more training data and improve
its performance indicating that there exists no strong bias
of the applied domain constraint preventing the model from
assimilating useful inductive signals if any, as more data
becomes available.
Frequently, in noisy and sparse settings, there is a minimum
acceptable error threshold that is desired and a method that
learns a stronger representation of the function space in
such contexts is highly valuable. For example, if an RMSE
value of 25.0 was desired, from Fig. 2b, we observe that
it is possible to achieve with just about 40% of available
training data using theDANN model while theNN model
never breaches this error threshold.
Hyperparameter Selection:One of the primary concerns in
the context of theDANN model is how the hyperparameter
� D which controls the in�uence of the domain constraint is
set. We set the value of� D empirically. We plot the RMSE
score for several values of� D in Fig. 3. As � D = 1 :0
rewards us with the best performance, we set the value� D =
1:0 in all our experiments. We also set the value of� = 1 :0
for this experiment.

B. Performance with monotonicity constraints in sparse and
noisy contexts.

We also evaluate the performance of ourDANN model
augmented withmonotonicity constraintson the synthetic
dataset described in section IV-A as well as a real-world
dataset described in section IV-B. We �rst discuss the
experimental setup and results for the synthetic data case

and then proceed with the experimental setup and discussion
of results for the real world application.

Experimental Setup - Synthetic Data

Bohachevsky Function Value Prediction:For this exper-
iment, we consider the datasetsX; X 0; X 00 which are as
described in section IV-A. Each rowi of X; X 0; X 00 has
the monotonic relationshipx i; 1 < x 0

i; 1; < x 00
i; 1 in tact and

consequentlyyi < y 0
i < y 00

i where each ofyi ; y0
i ; y00

i
corresponds to thei th target value ofY; Y0; Y 00respectively.
Imputing Noise: Let us �rst considerY; Y0. We know that
there exists a monotonic relationship of the formyi; 1 < y 0

i; 1
for each instance of the two target datasets. We randomly
sample a subset of rows and switch the values ofy and
y0 in those rows in order to create the effect of noisy data
where expected monotonicity constraints are violated. Let us
call the percentage of randomly sampled indices� . For the
purposes of our experiment, we vary the value of� between
10%–50% to evaluate the performance of theDANN model
on increasingly noisy datasets. We repeat the same process
of randomly exchanging values of a subset of rows forY 0

andY 00in order to violate the monotonicity constrainty0
i <

y00
i . The two sets of randomly sampled indices are disjoint.

Domain Knowledge Injection: The domain knowledge
being injected in this case checks for consistency in mono-
tonicity between input measurements and model predictions
i.e for a particular input instancei , the constraints enforced
arex i; 1 < x 0

i; 1) ŷi < ŷ0
i & x0

i; 1 < x 00
i; 1) ŷ0

i < ŷ00
i

Model Architecture: We once again compareDANN with
a vanilla neural network (NN) model.DANN and NN both
employ an architecture with two hidden layers where the �rst
hidden layer has a size of 512 units and 256 units is the size
of the second hidden layer. The rest of the architecture and
model design is similar to the architecture described in the
Model Architecturepart of section V-A.
Evaluation Strategy: We once again employ a 60-20-20
split for training, validation and testing respectively. The
RMSE score of the predictionŝY ;Ŷ 0; Ŷ 00compared against
the true valuesY; Y0; Y 00respectively is used for evaluating
model performance. BothNN and DANN are trained for
200 epochs and the bestNN andDANN model are selected
based on the performance on the validation set. We then
calculate the performance of the selected model on the test
set and report results. The test and validation experiments
are organized similar to those described in theEvaluation
Strategyof section V-A.
Discussion of Results:We run two sets of experiments,
one wherein we evaluate the model performance ofNN
and DANN models with increasingly noisy training data
and the other where we evaluate the model performance
by continuously decreasing the amount of training data
available for theNN and DANN models to be trained on,
to simulate sparse data settings.
Fig. 4 shows the prediction performance comparison ofNN

(a) Monotonicity Constraint - Noisy Validation Set. (b) Monotonicity Constraint - Noise-free Validation Set.

Figure 4: Comparison betweenDANN and NN in both the noisy and noise-free validation experiments indicates
that the DANN model signi�cantly outperforms the vanilla NN model as far as robustness to noisy training data is
concerned. We observe that even when� = 50% and with a noisy validation set, theDANN model is still able to
outperform the NN model. We used 40% of the available training data to maintain a relatively sparse dataset.

(a) Monotonicity Constraint - Noisy Validation Set. (b) Monotonicity Constraint - Noise-free validation Set.

Figure 5:Comparison betweenDANN and NN in noisy validation set for Bohachevsky function value prediction. The
noise-level used for the experiments is� = 30%. In both the case of the noisy and noise free validation sets, we see
that DANN signi�cantly outperforms NN.

andDANN with increasing noise percentage� , using noisy
and noise free validation sets during model training. We
observe that in Fig. 4a, both models show a rising trend
with increasing amount of noise while this trend is very
noticeable in the case of the domain agnosticNN model,
the deterioration of model performance of theDANN model
is relatively gradual almost plateauing after about� = 30%.
As a result of this, the performance improvement of the
DANNmodel over theNN model increases signi�cantly with
increase in noise percentage withDANN showing an average
performance improvement of 32.65% over the vanillaNN
model. A similar rising trend can be observed in theNN
model in Fig. 4b wherein a noise-free validation set was used
during training. Once again, theDANN model signi�cantly
outperforms the domain agnosticNN model, this time with

an average performance improvement of 42.7%.

Fig. 5a showcases the performance of the domain adapted
and agnostic models in sparse data settings trained using
a noisy validation set. Here, we observe that the domain
adapted modelDANN is able to learn a signi�cantly better
representation of the target function space relative to theNN
model using just about 20% of the training data. The model
performance of theDANN model stays almost constant
(after about 30% training data) with increasing training
data percentage indicating the ability of the domain aware
DANN model to effectively learn accurate representations
even using very little training data. TheDANN registers a
mean performance improvement of 28.06%. Fig. 5b depicts
that once again theDANN model outperforms theNN model
with increasing training data in most cases except for the

10% training data case, with a mean average performance
improvement of 18.32%.
Experimental Setup - Real Data:
O2 solubility prediction: The solubility of O2 generally
depends on three factors. The �rst two are the temperature
of the water and its salinity level. It has been observed
that O2 solubility in water is inversely proportional to both
temperature and salinity [18]. The other factor is pressure.
Higher pressure leads to increasedO2 solubility [19].
Dataset generation by changing one factor:We use
samples of temperature, salinity and pressure taken from
North Atlantic and Iceland BasinBio�oat 484. This dataset
contains the temperature, salinity and pressure levels for a
period of time. We calculate the amount ofO2 dissolved in
the water using Eqn. 7 given the above parameters. Apart
from this computation, we also compute the amount of
dissolvedO2 by raising the pressure level by 5.0 and 10.0
decibar while keeping the temperature, salinity level same as
de�ned in the dataset. In this way, we obtain three datasets
Y , Y 0, andY 00of different O2 levels.
Dataset generation by changing multiple factors:To
conduct a separate experiment to test multiple domain con-
straints applied simultaneously, we generate another dataset
by changing temperature and salinity level in addition to
pressure. Speci�cally, we increase the temperature by5�

and 10� Celsius and the salinity level by5 and 10 units
to obtainY , Y 0, andY 00.
Impute Noise: Noise imputation has been carried out on
Y; Y0; Y 00datasets in a similar manner by exchanging values
between the datasets as indicated in theImpute Noise
segment of section V-B. Through such noise imputation, we
achieve a set of noisy datasets with explicit violation of the
physical relationships.
Model Architecture: The architecture of both theDANN
and NN models is similar to that used for the synthetic
datasets as described earlier in section V-B. The only dif-
ference is that� is set to 0.01 (recall that it is set to 1.0 for
synthetic datasets). However� D remains constant (i.e. 1.0)
Evaluation Strategy: We once again employ the same 60-
20-20 split for train,validation and test sets respectively. We
compute the RMSE score by comparing the predictedO2

solubility Ŷ ;Ŷ 0; Ŷ 00with the target valuesY; Y0; Y 00respec-
tively and use this score for evaluating model performance.
We run the model for 300 epochs and select the best model
based its performance on the validation set. We then compute
the performance of the selected model on the test set report
results. The test and validation experiments are organized
similar to those described in theEvaluation Strategyof
section V-A.
Discussion of Results:We run two types of empirical
evaluations to evaluate the performance ofDANN. In the �rst
experiment we evaluate howDANN behaves in the presence

4https://www.bco-dmo.org/dataset/3426

of increasing noisy data. The result in shown in Fig. 6. Our
observation isDANN outperforms the vanillaNN in both
types of evaluation. The improvement is generally higher
when � is larger. For example when� = 50%, the gain is
17% for noise free modelselection, whereas it is only8%
when � = 10%. We observe similar phenomena innoisy
modelselection. Here gain in9% when � = 50% while it
is 2% for � = 10%. Another observation is overall RMSE
is lower for noise-freemodel selection. Since the test data
remains noise free for both cases, the model based on noise-
free validation set provides better understanding of the test
data rather than the model trained on noisy validation set.
From this experiment we can conclude thatDANN leverages
the domain constraint so that it can estimate the output better
than other model.
To evaluate howDANN performs when limited training
data is available, we train the model with fewer number of
instances (10%–50%) and compute the test RMSE same as
before. The result is shown in Fig. 7. We can see that here
alsoDANN outshinesNN model by a good margin. For both
models RMSE score is the highest when the size of the train
data is lowest i.e.10%. RMSE improves as more training
data is available.
Finally we test the ef�cacy ofDANN using the dataset where
multiple factors related toO2 solubility are changed. Since
here more than one variable is changed we can also include
more than one constraint in the objective function. The result
for noisy model selectionwhere � = 20% is shown in
Fig: 8. HereDANN-One leverages just one domain con-
straint i.e. pressure. SimilarlyDANN-Two uses two domain
constraints i.e. (pressure + temperature). FinallyDANN-
Three orDANN-All uses all three domain constraints (i.e.
pressure + temperature + salinity). We observe thatDANN
models i.e.DANN-One,DANN-Two andDANN-Three easily
outperformNN. Moreover,DANN-Three achieves the best
result as it exploits all three domain constraints.

C. Summary of Results

The results depicted in section V-A and section V-B show-
case that the domain-awareDANN model signi�cantly out-
performs the domain-agnosticNN model. A summary of our
experimental results depicting mean performance improve-
ment ofDANN over NN is shown in Table I.
How does DANN perform when the available training
data is noisy?
DANN models trained with approximation and monotonicity
constraints, perform well even in extremely noisy settings
highlighting the robustness that domain based constraints
bring to inductive learning models. The superior perfor-
mance ofDANN relative to theNN model tells us that they
are able to extract relevant signals from noisy data and are
able to model the underlying function space in an accurate
manner. TheDANN model shows a mean performance

10 20 30 40 50
�� (%)

0

5

10

15

20

25

30

35

T
es

t R
M

S
E

DANN
NN

(a) Monotonicity Constraint - Noisy Validation Set.

10 20 30 40 50
�� (%)

0

5

10

15

20

25

30

35

T
es

t R
M

S
E

DANN
NN

(b) Monotonicity Constraint - Noise Free Validation Set.

Figure 6: Comparison between DANN and NN in noisy and noise-free validation experiments for O2 solubility
prediction (lower the better). DANN outperforms NN in both cases, especially when � is higher.

10 20 30 40 50
(%) of Training Data

30

35

40

T
es

t R
M

S
E

DANN
NN

(a) Monotonicitiy Constraint- Noisy Validation Set.

10 20 30 40 50
(%) of Training Data

20

25

30

35

40

Te
st

 R
M

SE

DANN
NN

(b) Monotonicity Constraint - Noise-Free Validation Set.

Figure 7: Comparison of DANN and NN with reduced training data (lower the better). We use the dataset with
� = 50%. We can see that DANN clearly outperforms the NN model.

Table I: Summary of Results.

Type of Constraint Dataset Validation Set Experiment Type Mean % Improvement (DANN over NN)
Approximation Bohachevsky Noisy � vs. RMSE 14.67%
Approximation Bohachevsky Noisy (%)Training Data vs. RMSE 22.98%
Monotonicity Bohachevsky Noisy � vs. RMSE 32.65%
Monotonicity Bohachevsky Noise-Free � vs. RMSE 42.70%
Monotonicity Bohachevsky Noisy (%)Training Data vs. RMSE 28.06%
Monotonicity Bohachevsky Noise-Free (%)Training Data vs. RMSE 18.32%
Monotonicity O2 Sol. Noisy � vs. RMSE 7.19%
Monotonicity O2 Sol. Noise-Free � vs. RMSE 13.18%
Monotonicity O2 Sol. Noisy (%)Training Data vs. RMSE 4.05%
Monotonicity O2 Sol. Noise-Free (%)Training Data vs. RMSE 10.94%

improvement of 22.08% over the NN model across all the
experiments performed with noisy training data.

Can DANN perform well even with limited training data?
In the case of the approximation constraint, we can observe
a clear trend of the DANN model being able to assimilate

relevant signals even from noisy training data as more data
becomes available. In both the case of the monotonicity con-
straint and the approximation constraint, the DANN model is
able to learn a good representation of the target function even
with sparse training data without being biased by the domain

