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Abstract
Cyber physical systems such as buildings contain enti-

ties (devices, appliances, etc.) that consume a multitude of
resources (power, water, etc.). Efficient operation of these
entities is important for reducing operating costs and envi-
ronmental footprint of buildings. In this paper, we propose
an entity characterization framework based on a finite state
machine abstraction. Each state in the state machine is char-
acterized in terms of distributions of sustainability or perfor-
mance metrics of interest. This framework provides a basis
for anomaly detection, assessment, prediction and usage pat-
tern discovery. We demonstrate the usefulness of the frame-
work using data from actual building entities. In particular,
we apply our methodology to chillers and cooling towers,
components of a building HVAC system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; J.7 [Computing in Other Systems]: Industrial Con-
trol

General Terms
Algorithms, Management, Performance

Keywords
Energy, Buildings, Prediction, Anomaly detection, HVAC

1 Introduction
Buildings account for about 40% of all energy use in the

U.S., almost evenly split between residential and commercial
buildings. This translates to 8% of the global carbon dioxide
emissions [12]. In light of climate change, dwindling natu-
ral resources and rising energy prices, there is an increased
focus on making buildings more energy efficient.

Facility managers are increasingly instrumenting building
infrastructure to find ways of reducing resource consumption
(and thereby decreasing operational costs). One approach
to savings is to monitor equipment (or appliances/devices)
over time, to identify equipment requiring maintenance, or
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to detect inefficient operation. Such equipment have been
reported to waste 15 to 30% of energy in commercial build-
ings [4]. However, given the various factors that can impact
energy consumption of equipment in a building, it is chal-
lenging to detect if its energy consumption, under the cur-
rent conditions, is excessive. This is especially true if the
functionality of the equipment has not deteriorated in any
way. For instance, if the coefficient of performance (COP)
of a chiller, part of a building HVAC system, decreases, it is
unlikely it will be detected, even though the corresponding
increase in power consumption may be significant.

In this paper, we present a data driven framework to char-
acterize building appliances or devices or their aggregate
(which we refer to as entities) in terms of the consumption
of resources such as power or water, and/or a sustainability
metric like carbon footprint or toxicity. We use that charac-
terization as a basis for assessment, anomaly detection, pre-
diction, and control. The characterization is based on a finite
state machine abstraction of the entity’s operation, where
each state is associated with the corresponding distributions
of one or more sustainability metrics. We demonstrate the
feasibility of our approach by applying it to five months of
data collected from three chillers that provide chilled water
to 300,000 ft2 of office and data center space.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our building entity characterization frame-
work. Section 3 provides a use case involving building
chillers, while Section 4 describes other use cases, mainly
cooling towers. Section 5 discusses related work. Lastly,
Section 6 concludes the paper with a summary of our work
and future directions.

2 Entity Characterization Framework
2.1 Overview

The goal of the framework is to characterize the opera-
tion and resource consumption (e.g., power, water) of enti-
ties such as, HVAC components, lighting, etc., in a build-
ing. These characteristics can be used to compare the cur-
rent operation of an entity with its past operation, in terms
of sustainability metrics of interest. Similarly, comparisons
can be performed between an entity and its “peer group”.
A key mechanism for the characterization is a finite state
machine abstraction augmented with distributions of sustain-
ability performance metrics.

The architecture of the framework is shown in Figure
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Figure 1. Entity characterization framework.
1. The raw data associated with an entity is obtained from
sources such as the building management system (BMS), a
weather data service, and any additional sensors related to
the entity. Next, the data fusion step merges (or “joins”)
data from multiple sources. Data quality issues are also ad-
dressed in this step, which include removing outliers and in-
valid values, denoising, and imputing missing values. This
is followed by data transformation, which consists of feature
selection and dimensionality reduction; finite state machine
abstraction, where operational dynamics of an entity are dis-
cretized into states and transitions; and, sustainability char-
acterization, where each state is associated with probability
distributions of sustainability metrics. A number of appli-
cations can be built on top of this formulation as described
later.

2.2 State Machine Abstraction
The dynamics of operation of most devices or entities in

a commercial building are highly complex. Abstracting their
operation into a finite state machine allows for their modes of
operation to be better understood in terms of discrete states
and transitions. The states, in essence, are a partition of the
feature sub-space that impacts the entity’s operation.

An entity is treated as a black box and all the exter-
nal factors that influence its operation are used as features
to determine the underlying states, or the modes of opera-
tion. An initial feature selection is performed to pick signif-
icant features, which can be combined with domain exper-
tise, if available, to select or discard features. To construct
the states, the selected feature space could be linearly parti-
tioned. However, that is likely to result in a large number of
states, and further, choosing the “correct” number of parti-
tions along each feature can be difficult. We address these
problems using low dimensional embedding of the feature
space, by applying dimensionality reduction techniques such
as principal component analysis (PCA), followed by cluster-
ing to arrive at the states. One of the goals in the construction
of the states is that they are meaningful to a domain expert.

Formally, an entity finite state machine can be defined by
the following 4-tuple: (S,A,R,T ), where

• S is the set of all states, and |S| = k.

• A is a k× k transition matrix such that ai j specifies the

probability of the entity transitioning from state i to
state j, i.e., ∀i, j ∈ {1, · · · ,k},

ai j = Pr(s[n+1] = j|s[n] = i),

where ai j = 0 implies that a transition from state i to
state j has not been seen. Further, ∑ j ai j = 1.

• R is a set of m symbols which correspond to events (or
causes) that could lead to a state transition.

• Finally, T is a k× k×m matrix, where ti jl is the prob-
ability that event l causes transition from state i to j to
occur, i.e., ∀ i, j ∈ {1, · · · ,k}, and l ∈ {1, · · · ,m},

ti jl = Pr(s[n+1] = j|s[n] = i,r[n] = l)

The state machine parameters (S,A,R,T ) can be derived
from data available for the entity. The transition matrix A
is determined by mapping the data onto states and count-
ing. However, determining the set of events R would usually
require some domain knowledge. The events related to an
entity could be logged by the entity itself, or manually by
an operator. These events could also correspond to changes
in the value of a feature. Once the events are determined,
they could be correlated with the state changes to determine
the matrix T . Note that an event need not result in a state
transition, or could be responsible for several transitions.

2.3 Sustainability Characterization
Once the state machine is created for an entity, each state

can be characterized in terms of one or more sustainability
metrics. The sustainability metric could be a measure of
resource consumption (e.g., power, water) or environmental
impact (e.g., carbon footprint, toxicity), or any other quan-
tifiable measure of interest, including a monetary cost.

To add the sustainability metrics, we augment the state
machine to a 5-tuple: (S,A,R,T,D). D corresponds to a k× p
matrix of distributions of p sustainability metrics associated
with each of the k states. The matrix D is computed from the
data by mapping all the points to the states and computing
each of the p sustainability metrics for each of the states.

2.4 Applications
2.4.1 Anomaly detection

The state machine can be used for detecting anomalies
that result in degradation of the sustainability metrics. This
is done by computing the current sustainability metrics of
the entity and comparing it with the metrics distributions as-
sociated with the corresponding state in the state machine.
Based on where the current point lies on this distribution, an
anomaly alert can be issued. Similarly, for operational data
collected over a longer period, the distribution of the sustain-
ability metrics can be compared with that of the state, and if
the difference is statistically significant, an anomaly can be
flagged. Note that the two distributions can be compared
based on a number of techniques such as: degree of overlap,
Kullback-Leibler divergence, etc.

2.4.2 Assessment
The above is a temporal assessment of an entity, that is,

a comparison of its efficiency to the efficiency of the same
entity under similar conditions in the past. If data is avail-
able for two or more similar entities, then an entity can be
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compared or assessed with its “peer” group. If the number
of such entities is small, then a pair-wise comparison can be
performed, where the distributions of the sustainability met-
rics are compared for the same states for the two entities. If
a sufficient number of entities are available, then reference
distributions for a particular state for that kind of entity can
be established, and distributions of individual entities can be
compared against the reference. This enables quantitative
answers to questions like, “At what percentile does a partic-
ular entity lie in a population of peers in terms of a (specific)
sustainability metric?”

2.4.3 Control
The state machine representation allows a user/operator

to reason about the entity in terms of a number of discrete
states, characterized by the sustainability metrics. Based on
the sustainability metrics, each state can be ranked, and this
ranking can be used to compare states, and also determine
desirable transitions (to a better ranked state) and, similarly,
undesirable transitions. The events (set R) causing a tran-
sition can be categorized into those within the control of a
user (e.g., some parameter setting) and those outside a user’s
control (e.g., weather conditions). Such a framework can be
used to select user settable parameters such that the entity is
likely to transition to better ranked states (or at least is pre-
vented from transitioning to worse ranked states).

2.4.4 State Prediction
A state in the state machine captures all of the features

used to determine that state. Thus, assuming that the error
introduced by state machine abstraction is acceptable, pre-
dicting future states is equivalent to multivariate time series
prediction for the entity features considered. In fact, the state
machine abstraction essentially converts a multivariate time
series prediction problem into a univariate time series pre-
diction problem. Since the states are associated with sustain-
ability metric distributions, knowing future states provides
information on future performance of the entity in terms of
these sustainability metrics. We propose a random forest
based model to predict the future states based on statistics
of the past state sequence and weather forecast information.

3 Use Case: Chillers
In commercial buildings, heating, ventilation and air-

conditioning (HVAC) constitute a significant portion of the
power consumption, accounting for nearly 32% of their total
energy usage [12]. We selected chillers to demonstrate our
framework, since within the HVAC system, chillers are often
the largest consumers of power, and show complex behavior.

3.1 Background
A chiller provides a cooled liquid, typically water, that

can be circulated through a heat exchanger to provide air
conditioning for buildings and IT infrastructure such as
data centers. Chillers can be broadly classified into two
categories, air-cooled and water-cooled chillers. Figure 2
demonstrates a schematic for a typical water-cooled chiller
system. The gray, dashed box in the center of this figure cor-
responds to a chiller unit, which is composed of four basic
components, namely, an evaporator, a compressor, an econo-
mizer, and an air-cooled or water-cooled condenser. The heat
from the chiller load is dissipated to the atmosphere through
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Chilled Water loop

Chiller Load 
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 Wcomp
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Figure 2. Schematic of a water-cooled chiller system.

Capacity (Tons) Mfg Year
Chiller 1 650 2001
Chiller 2 600 2005
Chiller 3 600 2010

Table 1. Details of Chiller Infrastructure on site
a series of steps involving a refrigerant loop, a chilled water
loop, and a cooling tower water loop [7].

We define three terms used in the context of chiller units.
Chiller load corresponds to the amount of heat that is gen-
erated (and thus needs to be dissipated) on the site. It is
commonly specified in Tonnes (Tons). Chiller power con-
sumption reports the power consumed by the chiller unit. It
is commonly measured in kilowatts (kW). Chiller COP (Co-
efficient Of Performance) of a chiller unit indicates how ef-
ficiently the unit provides cooling, and is defined as COP =
3.517× L

P , where L corresponds to the chiller load (in tons),
and P denotes its power consumption (in kW) [7]. While
one chiller unit may be sufficient for a small load, several
units working as an ensemble are usually required to meet
the cooling demand of a large commercial campus.

3.2 Test Bed
We consider three large, two-storey buildings on a com-

mercial campus as an initial test bed for our analysis. The
campus is a mixed use (commercial and industrial) facility
consisting of office spaces, laboratories, a data center, a cafe-
teria, restrooms, and other shared indoor and outdoor spaces.
The three buildings on this campus has a total footprint of
300,000 ft2, and hosts about 500 occupants.

The site is equipped with three TRANE (model CVHF)
CenTraVac water-cooled liquid chillers. Table 1 lists their
capacity along with their manufacturing year. The primary
load on these chillers correspond to the cooling requirements
(air-conditioning) for the three buildings, as well as cooling
services for labs, clean rooms, and a data center.

Figure 3 shows the chiller load on this site. The site is
equipped with multiple chillers and sufficient spare capacity
to ensure business continuity and to be able to meet the site
cooling demands, in the event of a unit becoming unavailable
as a result of failure or required maintenance.

The chillers on site are designated as primary, secondary
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Figure 3. Total Chiller Load on site.
and back-up, where the primary chiller acts as the main
chiller with the secondary chiller being switched on when-
ever the load exceeds the primary chiller’s capacity. These
designations are usually rotated among the three chillers ev-
ery few months for even wear and tear.

3.3 Data Collection and Cleanup
The site is equipped with a BMS system that has about

6,000 data points corresponding to various sensors and me-
ters installed throughout the campus, of which only a small
subset are related to the site chiller system. However, iden-
tifying the set of relevant data points is a challenging task as
most points are labeled in an ad-hoc manner, with little or
no description. With the help of a domain expert (a build-
ing administrator), we identified around 100 data points to
be related to the site chiller system. These BMS parame-
ters span flow rate, temperature, pressure, power, and other
parameters related to the site air handling equipment such
as cooling towers, pumps, etc., as well as ambient weather
information such as humidity, ambient temperature, and am-
bient pressure. Figure 4(a) provides a sample list of these
parameters along with their BMS name tags.

We maintain a historical log of these parameters sampled
every 5 minutes, and collected over a period of 5 months.
However, the resulting time series data has missing values
caused by hardware and software failures. Treating these
missing values as zeros could lead to erroneous results, and
hence need to be filled. We adopt a weighted global average
strategy to impute the missing values. This method could be
used to impute blocks of missing values, while preserving
the local structure. Specifically, if x[n], n = 1, · · · ,N denotes
a time-series curve sampled at N different time points, for
any time index 1 ≤ m ≤ N with x[m] missing, its value is

imputed by x[m] = ∑N
k=1 w[k]x[k]
∑N

k=1 w[k]
, where the weights w[k] are

chosen such that they decrease as a function of their distance
from the missing value. For example, the weight function
can be chosen to be w[k] = 1/|m−k|2. On average, less than
4% of the values were missing in our data.

3.4 State Machine Abstraction
One of the goals of a state machine abstraction is to be

able to efficiently summarize the dynamics of the operation
of a device using a few distinct states. To identify the un-
derlying operating states of a device, we propose a cluster
based approach on a low-dimensional embedding of the fea-
ture space. The proposed algorithm consists of three steps.

1. Feature Selection: The first step is to identify the fea-
tures that affect the operating behavior of a device. We
treat the device as a black box and take a control vol-
ume approach, where the selected features correspond

to the input and output parameters to this black box.
Figure 4(b) demonstrates these parameters in the case
of a chiller, where the features correspond to chilled
water supply temperature (TCHWS), chilled water return
temperature (TCHWR), chilled water supply flow rate
( ḟCHWS), condenser water supply temperature (TCWS),
condenser water return temperature (TCWR), and con-
denser water supply flow rate ( ḟCWS).

2. Low-dimensional embedding: The features selected
in the first step can be correlated. In this module, we
remove such redundancies by projecting the data onto a
low-dimensional space. Furthermore, reducing the di-
mensionality of the feature space aids in improving the
performance of the next step.

We perform dimension reduction in two stages. In the
first stage, we use domain knowledge to reduce the fea-
ture dimensions, followed by projection using princi-
pal component analysis (PCA). We choose PCA over
other dimensionality reduction algorithms such as mul-
tidimensional scaling or Laplacian Eigenmaps, as PCA
is a simple, linear projection method that is both com-
putationally fast and feasible even on large datasets.

In the case of chillers, we use domain knowledge
to reduce the feature space from the initial six fea-
tures to the following four features, TCHWR, (TCHWR −
TCHWS) ḟCHWS (which is proportional to the amount of
heat removed from the chilled water loop, i.e., chiller
load), TCWS, and (TCWR −TCWS) ḟCWS (which is propor-
tional to the amount of heat removed from the con-
denser water loop). The obtained feature space is fur-
ther reduced using PCA, where we chose the first two
principal dimensions which capture around 95% of the
variance in the feature data.

3. Clustering: The final step is to partition the projected
data into clusters, where each cluster represents an un-
derlying operating state of the device. The clusters are
determined using the k-means algorithm based on the
Euclidean distance metric.

The output of this algorithm corresponds to a state se-
quence s[n],n = 1, · · · ,N, where s[n] ∈ {1, · · · ,k} with k de-
noting the number of clusters (or states). Using this state se-
quence, we can estimate the a priori probability of a device
operating in state i, as well as the probability of the device
transitioning from state i to state j, ∀i, j ∈ {1, · · · ,k}:

πi =
∑N

n=1 1{s[n]=i}
N

, and ai j =
∑N−1

n=1 1{s[n+1]= j, s[n]=i}
∑N−1

n=1 1{s[n]=i}
, (1)

where 1{E} is an indicator function that takes the value 1
when the event E is true, and 0 otherwise.

Figure 5(a) shows the state transition diagram for Chiller
3 based on three months of training data. The feature data
has been partitioned into five clusters leading to five different
states. The nodes in this figure correspond to the operating
states of the chiller, where the size of a node determines its
frequency of occurrence (i.e., πi). The edges denote the state
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BMS Name Tag Description from Domain Expert Units
B1L CH3.CHWRT Chilled water return temp oF
B1L CH3.CHWS.FLOW Chilled water supply flow gpm
B1L CH3.CHWS.STPT Chilled water supply temp set point oF
B1L CH3.CHWST Chilled water supply temp oF
B1L CH3.COMP.TEMP Compressor temp oF
B1L CH3.COND.PRESS Condenser pressure psi
B1L CH3.COND.TEMP Condenser temp oF
B1L CH3.CWRT Condenser water return temp oF
B1L CH3.CWS.FLOW Condenser water supply flow gpm
B1L CH3.CWST Condenser water supply temp oF
B1L CH3.EVAP.PRESS Evaporator pressure psi
B1L CH3.EVAP.TEMP Evaporator temp oF

(a)

TCHWS TCHWR 

TCWR TCWS 

fCWS 

fCHWS 

(b)

Figure 4. (a) A sample list of the parameters related to Chiller 3 (b) Features that determine operating states of a chiller.

transitions1, where bi-directional transitions are represented
by red lines, and uni-directional transitions by blue arrows.
The thickness of these edges correspond to the frequency of
occurrence of the transition.

3.5 Sustainability Characterization
The operating behavior of the chiller in each of these

states can be characterized in terms of its power consump-
tion, and its efficiency of operation as measured by COP. Fig-
ure 5(b) shows the probability density function (pdf) of the
chiller power consumption and COP in each of the 5 states.
The density functions are estimated using the kernel density
estimate with a Gaussian kernel, as described below.

Let Xi denote a random variable corresponding to the
chiller power consumption in state i, and let Xi denote the
corresponding set of power consumption values observed in
the training data. Then, the distribution of Xi is estimated by

̂fXi(x) =
1

|Xi| ∑
z∈Xi

1√
2πσ2

e
−(x−z)2

2σ2 , (2)

where |Xi| denotes the size of the sample set, and the kernel

bandwidth σ = 1.06σ̂|Xi|−1/5, σ̂ being the standard deviation
of the samples. This choice of σ is known to be optimal for
estimating normal distributions [11].

Figure 5(b) shows that the chiller operates at a lower ef-
ficiency in states 3 and 5 with a mean COP value of 4.74
and 5.43, as compared to states 1, 2, and 4 whose mean COP
values are 6.12, 6.26, and 6.09, respectively. Using these ef-
ficiency values, the states can be characterized into “good”
(higher efficiency) and “bad” (lower efficiency) states. Ide-
ally, the chiller would operate only in the “good” states. The
cause for a transition from a “good” state to a “bad” state can
be identified via the transition characteristics.

The state transitions capture the dynamics of the opera-
tion of a device. Each transition exhibits a unique character-
istic in terms of the input features responsible for the tran-
sition. Figure 6 shows the change in feature distribution in
transitioning from state 5 (gray dotted curves) to state 3 (or-
ange solid curves). This figure reveals that the chilled water
return temperature (TCHWR) and the condenser water supply
flow rate ( ḟCWS) are the features that are most likely respon-
sible for this transition. We quantify this visual observation

1The self transitions (i.e., transition within the same state) are not shown

in this figure.
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Figure 6. Input features that are responsible for the tran-
sition from state 5 to 3.
by means of an overlap measure defined below. For any in-
put feature X , we define the probability of that feature being
responsible for a transition from state i to j as

νX
i j := 1−

Z
min(̂fXi(x), ̂fXj(x))dx, (3)

where ̂fXi(x), ̂fXj(x) correspond to the kernel density esti-
mate of the feature distribution in states i and j, respectively.
The integral value in the expression for νX

i j corresponds to the

area under the overlap between the two distributions, whose
value ranges from 0 to 1. Hence, νX

i j takes a value close to

0 when there is significant overlap between the two distri-
butions, and close to 1 when there is no overlap. The νX

i j
values for the six features in the above transition correspond
to 0.5679, 0.9858, 0.5199, 0.5929, 0.3273, and 0.9786. This
corroborates our earlier observation that TCHWR and ḟCWS are
the features most likely responsible for this transition.

3.6 Anomaly Detection/Assessment
We will now demonstrate the power of state machine

models in assessing the performance of a chiller with respect
to its past performance, as well as with respect to its peers.
As mentioned earlier, one of the main advantages of assess-
ing the performance of a device within each state is that it en-
sures comparison under identical input/external conditions,
thereby allowing for a fair and unbiased assessment.

We partition the chiller data into two sets. We train the
state machine model based on three months of training data,
and used the remaining two months of chiller data for perfor-
mance assessment within each state. We further partition the
two months of test data into six different test samples, where
each sample consists of ten consecutive days of chiller data.
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Figure 5. (a) State Transition Diagram for Chiller 3 (b) Power consumption and COP characteristics of the chiller in
each state. Each plot corresponds to a probability density function of the corresponding random variable.

For each sample we project the feature data onto the princi-
pal dimensions learned during the training phase, and assign
each projected data point to its nearest state (or cluster). We
then compare the distribution of the chiller COP in the train-
ing data with that of the test data, for each state. We raise an
anomaly flag if these two distributions are significantly dif-
ferent, as quantified by the Kullback-Leibler divergence [1],
or the overlap measure defined in (3).

Figure 7 demonstrates the performance assessment results
for 4 different test samples, where we show the performance
assessment results in one state for each case. The (gray)
dotted curves correspond to the chiller COP or feature dis-
tribution in the training data, and the (orange) solid curves
correspond to that of the test data.

Figure 7(a) demonstrates a normal scenario, where the
chiller COP behavior in the test phase is similar to that dur-
ing the training phase. Figure 7(b) demonstrates a scenario
where the chiller COP distribution in the test phase is sig-
nificantly different from that of the training phase. To iden-
tify the cause for this anomalous behavior, we examine the
distribution of the input features, and look for features that
have a significantly different distribution in the test data as
compared to the training data. In this case, we identified the
chiller load to have a significantly different distribution as
shown in Figure 7(b). On further examination, we identified
the cause for this change in load distribution to be that of
a sensor error, where the sensor monitoring the chiller load
temporarily stopped refreshing its readings, resulting in the
spike at around 300 Tons. However, the true load during this
period could have been different, and hence the time points
that have been assigned to state 5 could correspond to other
states. This example is an instance of a temporal anomaly,
and it can be further categorized into “sensor malfunction”
or “hardware issues” anomaly category.

Figure 7(c) demonstrates a second anomalous scenario
where the chiller’s performance has improved in the test
sample as compared to that of the training period. To identify
the cause for this anomalous behavior, we once again com-
pare the feature distributions in the training data with that of
the test sample. In this case, we identified the chilled wa-
ter supply temperature TCHWS (which serves as a proxy to

the set point temperature) to have been increased over this
period, resulting in an improved performance.

These three examples correspond to the scenario where
the chiller’s performance is assessed with respect to its past
performance. We will now demonstrate performance assess-
ment of the chiller with respect to its peers, under similar
conditions. Out of the three chillers on site, chillers 2 and 3
are identical (same brand, model and capacity). Hence, we
compare the performance of these two chillers in each state,
i.e., under identical input conditions. Figure 7(d) demon-
strates the COP behavior of chiller 3 (gray dotted curve) and
chiller 2 (orange solid curve) in state 2. This figure reveals
that chiller 2 has a significantly higher COP than that of
chiller 3. We observe a similar difference in the COP be-
havior of chillers 2 and 3 in the remaining four states. This
anomalous behavior could have been caused due to reasons
such as different internal settings within the chillers, or due
to the continuous operation of chiller 3 over a long period
resulting in a degradation of its performance.

Identifying anomalies that correspond to the chiller per-
formance degradation is extremely critical, as timely detec-
tion of such anomalies could result in huge savings in their
power consumption. For example, by identifying the cause
for the anomaly in Figure 7(d), and improving the COP of
chiller 3 to that of chiller 2 could potentially result in 25.8%
savings in the power consumption of chiller 3. The above
savings has been estimated as follows,

% savings =
ηchiller 3 −ηchiller 2

ηchiller 3
×100,

where η = 3.517/COP, which corresponds to the amount of
power consumed (in kW) to provide 1Ton of cooling load.

Finally, note that this is an unsupervised problem with no
labeled data to validate the trained models. Hence, temporal
assessment can only detect deviations relative to past behav-
ior. Identifying the true versus anomalous behavior can be
done through peer assessment (if data from a set of similar
peers is available), or by a domain expert.

3.7 State Prediction
Each state of the chiller is a representation of the distri-

bution of the input features, as well as sustainability met-
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Figure 7. (a-c) Performance Assessment of chiller 3 with respect to its past performance. The (gray) dotted curves
correspond to the chiller’s past performance, and the (orange) solid curves correspond to its current performance (d)
Performance Assessment of chiller 3 with respect to its peers. The (gray) dotted curve correspond to chiller 3’s perfor-
mance, and the (orange) solid curve correspond to chiller 2’s performance.
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Figure 8. Prediction error using the three approaches.
True states vs. Predicted states using our approach

rics such as power consumption and COP. Hence, predict-
ing the future states of the chiller provides a wealth of in-
formation in terms of the input conditions as well as the fu-
ture resource (power) requirements. This information can be
extremely valuable to a building administrator in terms of
chiller scheduling, and demand shaping.

One approach is to predict the two principal compo-
nents using standard time-series prediction techniques (e.g.,
ARMA). The predicted principal component values can then
be mapped to states, by assigning each predicted data point
to the closest cluster in the projected space. The optimal val-
ues for the order of the AR, and the moving average parts
can be chosen using the Akaike information criterion [1].

Alternatively, we propose to predict the chiller states di-
rectly, thereby reducing a multivariate time-series prediction
problem to univariate time-series prediction. We use a ran-
dom forest based ensemble classifier [1] to predict the chiller
states based on the following seven input features: time of
day, day of week, month of year, duration of the previous
state, chiller state on previous day at same time, and weather
forecast information such as temperature and humidity.

Figure 8 compares the performance of the three models
in terms of their prediction error, i.e., the fraction of states
misclassified. The results are for one day (24 hours) ahead
prediction, averaged over 50 consecutive days. In each case,
the training data corresponds to all the available past data.
The figure shows that the classifier-based approach that di-
rectly predicts the states performs significantly better than
the multivariate time-series prediction methods. Also shown
are the true states in the 50 different test cases, along with
the predicted states using the classifier-based approach.

4 Other Use Cases
4.1 Cooling Tower

In this section, we demonstrate the generality of our
framework by replicating the above analysis for an ensemble
of cooling towers. Cooling towers are heat removal devices
that are used to transfer heat in the condenser water supply
loop to the atmosphere. Hot water from the condenser of the
chiller unit is sprayed from the top of the cooling tower. Dry
air enters through the vertical faces of the cooling tower and
flows past the sprayed water, transferring the heat from the
water to the air. The cooled water that is collected at the bot-
tom of the cooling tower is sent back to the condenser, while
the warm, moist air is forced out into the atmosphere by huge
blowers. Our site is equipped with three cooling towers that
work in parallel. We treat the three cooling towers and the
associated pumps as one physical entity in this analysis.

To select the features that determine the operating behav-
ior of this entity, we again treat the entity as a black box,
and determine its input and output parameters, shown in Fig-
ure 9(a). Note that the ambient temperature and humidity
play a critical role for this entity, as the performance of the
cooling towers depends on the temperature and the mois-
ture in the air flowing in. Using domain knowledge, the
above five features are reduced to the following four: TCWS,
(TCWR −TCWS) ḟCWS, ambient temperature, and ambient hu-
midity. Using PCA we further reduce three features that cap-
ture 95% of the variance in the feature data. Lastly, the pro-
jected data is partitioned into five clusters using k-means.

The output state sequence can then be used to estimate the
a priori state probabilities and the transition probabilities, as
described in Section 3.4. Figure 9(b) shows the state transi-
tion diagram for this entity, along with its mean COP value
in each state. Note that this entity operates at low efficiency
in state 1, high efficiency in states 2 and 4, and moderate ef-
ficiency in states 3 and 5. Given this state machine, we can
perform assessment and anomaly detection for the cooling
tower ensemble, similar to that for the chillers.

Figure 9(c) demonstrates a temporal anomaly, where the
entity operated at a higher efficiency during a test period (or-
ange solid curves) as compared to that of the training period
(gray dotted curves), under identical input conditions. Iden-
tifying the cause for this anomaly, and improving the COP of
the ensemble could potentially result in 8.7% savings in the
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Figure 9. (a) Features that determine the operating state of the ensemble of Cooling Towers (b) State Transition Diagram
for the ensemble along with its mean COP value in each state (c) Performance Assessment of the ensemble with respect
to its past performance.

power consumption of the ensemble in State 3.

4.2 Other Devices/Entities
In the future, we plan to extend the proposed state ma-

chine framework to other devices such as lighting, where the
input features could correspond to occupancy information
and ambient lighting, and to entities such as building aggre-
gate loads, where the features could correspond to weather,
time of day, workday/holiday, and occupancy information.
However, there are challenges involved in modeling these
devices, as it is difficult to measure some relevant input fea-
tures. For example, the operating behavior of lights can de-
pend on the behaviors of the occupants.

5 Related Work
Finite state machines are widely used for modeling sys-

tems. Hart used FSMs of appliances for energy disaggrega-
tion [3]. Parson et al. used similar state machines as prior
models, again for energy disaggregation [8]. These studies
only used states based on power levels.

There is a large body of work on anomaly detection.
Chandola et al. provide a comprehensive survey on the tech-
niques commonly used [2]. Katipamula et al. [4, 5] reviewed
fault detection and diagnosis (FDD) in buildings. Zhou et
al. describe a model-based FDD method for HVAC sys-
tems [13]. Regression models are built for performance in-
dices related to the operation of HVAC sub-systems such as
chillers, cooling towers, etc. The output from these models,
built using data from normal operation, is compared with ac-
tual data to determine anomalies. Patnaik et al. model op-
eration of an ensemble of chillers using state machines de-
rived from chiller utilization data [9]. A hierarchical rule-
based FDD method for HVAC is proposed by Schein et al.
[10]. Most of these FDD methods require deep domain ex-
pertise. In comparison, our framework requires minimal do-
main knowledge, and applies to any entity. Some of these
methods, e.g., [10], could be used in conjunction with our ap-
proach to determine possible causes of anomalies detected.

Comparing consumption of an entity with a peer group is
commonly done. Kolter et al. create a predictive model for
aggregate building consumption and enable users to compare
their consumption with that of a similar population [6].

6 Conclusions and Future Work
This paper describes a data-driven framework for charac-

terizing the resource consumption of building entities. A use

case involving three chillers from a large commercial cam-
pus is used to demonstrate the importance of the framework.
As an example, a peer assessment of two identical chillers
revealed a 25% reduction in the power consumption for one
of the chillers is possible.

We are extending our framework in several ways. First,
we continue to evaluate our knowledge discovery techniques
on an increasingly larger set of data. Second, we are imple-
menting our framework on a cluster of servers (rather than
one), to enable it to evaluate all appliances/devices/entities
in a building or set of buildings in parallel. Finally, we are
developing entity specific algorithms that can provide causal
analysis for the observed anomalies, and can be implemented
on top of our current framework.
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