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Abstract

This paper describes the design, implementation, and
performance evaluation of ST-TCP (Server fault-Tolerant
TCP), which is an extension of TCP to tolerate TCP server
failures. This is done by using an active backup server that
keeps track of the state of the TCP connection and takes
over the TCP connection whenever the primary fails. This
migration of the TCP connection to the backup is com-
pletely transparent to the client. Because no changes are
required on the client machine, any TCP client can access a
ST-TCP server. The performance overhead of ST-TCP over
standard TCP is minimal, and during normal operation its
behavior is the same as that of a regular TCP. In addition,
ST-TCP provides a fast and seamless failover whenever the
primary server fails. This is verified by a prototype imple-
mentation of ST-TCP in the Linux operating system, and
experiments with a number of simulated applications which
have different communication characteristics.

1 Introduction

TCP is the most popular transport-level protocol for con-
structing distributed applications over the Internet. It has
been used to construct several commonly used applications
and protocols such as FTP, http, telnet, ssh, and sendmail.
The main reason for TCP’s popularity is its rich set of de-
sirable features, including a reliable, ordered, duplex byte
stream, flow control, and congestion control. However, an
important feature that TCP does not provide is server fault
tolerance. If the machine on which a server is running fails,
all TCP connections to the server break and all TCP clients
get disconnected from the server. Even if a backup server
exists, a new TCP connection has to be established between
each client and the backup server and lost packets have to
be determined and retransmitted.

�Also with Avaya Labs, 1300 West 120th Ave., Westminster, CO
80234.

With the growing popularity of TCP to construct dis-
tributed applications, it is vital that transparent techniques
be developed that allow a client to receive uninterrupted
and undegraded services despite server failures. Examples
of present-day applications that use TCP and require server
fault tolerance include live broadcast of events, on-line bro-
kerage firms, video-on-demand services, and e-commerce.
While several large scale systems have been developed to
address the issue of high availability in the presence of fail-
ures, they are typically too heavy weight and require exten-
sive modification of client programs. A brief overview of
these systems and other related work is given in Section 2.

In this paper, we describe the design, implementa-
tion, and performance evaluation of ST-TCP (Server fault-
Tolerant TCP) that provides support for tolerating the fail-
ure of a TCP server. ST-TCP relies on the existence of an
active backup TCP server that takes over the TCP connec-
tion in case of a primary TCP server failure. This server
fault tolerant extension of TCP is completely transparent
to the TCP clients, i.e., there is no change required in
the client-side TCP and no special wrapper or libraries are
needed on the client machines. Standard TCP clients can
connect to a ST-TCP server in the same way they connect
to a standard TCP server. Also, the clients do not notice any
server failure, or service disruptions during a server failover
period. Thus, ST-TCP allows standard TCP clients to stay
connected and continue to receive the required service de-
spite TCP server failures.

This paper makes several important contributions in the
field of dependable distributed computing. First, ST-TCP is
one of only a handful of approaches designed to deal with
server failures at the transport level, and unlike these other
approaches ST-TCP is very light weight. There is virtu-
ally no performance overhead during failure-free periods,
and failover is very fast. Second, unlike most other fault-
tolerance approaches, ST-TCP does not require the installa-
tion of any extensive infrastructures. ST-TCP only requires
minor changes to standard TCP server stack. Finally, ST-
TCP is completely transparent to the clients. No changes
are needed on the client-side TCP, and no new software
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(libraries or wrappers) needs to be installed on the client
side. Existing TCP client applications can connect to ST-
TCP servers without any modifications in their code.

2 Related Work

A number of approaches to provide high availability in
the presence of failures have been investigated over the last
20 years. These include group communication systems, pri-
mary backup systems, distributed object middle-ware, and
transport-level, fault-tolerant systems.

Primary backup systems provide fault-tolerance capabil-
ities by replicating service state on one or more backup
servers. Clients interact with the primary server. Backup
servers monitor the health of the primary, and in case of a
primary server failure, one of the backup server is promoted
to act as the new primary server (failover). Primary backup
techniques have been used to build numerous dependable
systems. For example, see [12, 7, 18]. Again, most of these
systems require clients to be aware of the protocols being
used, and maintain the identity of the server. On a failover,
the new primary and the client re-establish the connection.
This requires an application level protocol which must be
built into the client as well as the server.

There are approaches for achieving fault tolerance aimed
at the transport-level protocols such as TCP. These include
FT-TCP [1], HydraNet [13], [11], M-TCP [17], and SCTP
[16]. ST-TCP presented in this paper belongs to this cate-
gory.

In FT-TCP[1], server fault tolerance in TCP is provided
by using the standard primary backup approach. Two wrap-
pers (SSW and NSW) are put around the TCP server code
to forward TCP byte stream to a logger, and ensure that
the server state stored at the logger is consistent with the
primary server state. In case of a server failure, a new
server is started using the state stored in the logger. Dur-
ing this failover period, the client TCP connection is kept
alive by sending zero-size window advertisements at reg-
ular intervals. ST-TCP improves on FT-TCP by providing
a fast failover. The failover time in FT-TCP can be fairly
large. This is because a failover in FT-TCP requires failure
detection, time for the backup server to start, and time to
update the backup server state from all the data saved in the
logger (which could be quite large for long running applica-
tions). Thus, although the TCP connection does not break
here, a client will certainly see a disruption and degradation
in service. ST-TCP, on the other hand provides a very fast
failover. Note that FT-TCP could in principle be used with
active replication and in this way could reduce the fail-over
time.

ST-TCP makes different trade-offs compared to FT-TCP.
ST-TCP does not only optimize the fail-over time but also
the failure-free case. By tapping the packets, the backup

does not increase the latency nor does it decrease the band-
width. However, ST-TCP requires additional hardware (ad-
ditional logger computers, NICs, and CPUs) in compari-
son to FT-TCP. ST-TCP is optimized for applications that
need high troughput and availability and that are important
enough to pay for the extra hardware.

HydraNet-FT [13] is an infrastructure to dynamically
replicate services across an internetwork and have repli-
cas provide a single, fault-tolerant service access point to
clients. The service access point is facilitated by an IP-
redirector that provides one-to-many message delivery to
replicas, and many-to-one message delivery from the repli-
cas to the client. ST-TCP is based on a similar idea of redi-
recting TCP byte stream to backup servers, in addition to the
primary server. The main difference between HydraNet-FT
and ST-TCP is that the process of redirection is extremely
simple (tapping TCP byte stream) in ST-TCP. In fact, there
is no separate redirector component in ST-TCP. The main
reason for this simplicity is that while ST-TCP is focused on
providing server fault-tolerance in TCP, HydraNet-FT aims
to provide additional services such as replica management
and load balancing. As a result, the design of redirector is
complicated.

Another approach for providing fault tolerance at the
TCP layer is discussed in [11]. A backup server is used
to tap the Ethernet to read all the packets destined for the
primary. A layer is added between the TCP and the appli-
cation layer on the servers as well as the client. When the
TCP connection breaks or the primary fails, this layer in the
backup server and the client establish a new TCP connec-
tion. Although, this makes a connection failure transparent
to the client application, it does require modifications on the
client machine (installing a client wrapper). This defeats
our main goal of not requiring any changes on the client
end.

A recent work addressing continuity of services imple-
mented using TCP is M-TCP (Migratory TCP) [17]. M-
TCP operates in an environment where a service is imple-
mented by a pool of servers. A client establishes a TCP
connection with one of the servers. Each server maintains a
fine-grained checkpoint of each TCP connection state. TCP
connection migration from its current server �� to the an-
other server �� in the server pool depends on the migration
policy. For example, it can be initiated by the client when
it notices that its service has deteriorated. At this point, ��
transfers the checkpointed state�� of this connection to ��,
�� starts a new TCP connection and initializes its state us-
ing ��, and then sends a message to the client to continue
its operation.

SCTP [16] provides support for tolerating network con-
gestion and failure by establishing multiple redundant paths
between the client and the server. It cannot tolerate
server failures. We note that ST-TCP can operate in con-

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03) 



junction with SCTP. This will result in a more powerful
transport-level service that can tolerate both network fail-
ures/congestion and server failures.

Several TCP extensions have been proposed to support
TCP connections in face of mobility of clients. These in-
clude [4, 5, 10, 15]. They typically rely on either a proxy
(which is a single point of failure), or maintaining a full
connection state at the server/client. In either case, they are
not designed to tolerate server failures. Finally, several ap-
proaches have been taken to provide continued service of
HTTP servers [2, 14].

3 Informal Overview

ST-TCP is based on the idea of primary/backup approach
to provide high availability and fault tolerance. To ensure
fast failover, ST-TCP maintains active backup servers that
can take over the functions of the primary server as soon as
any failure of the primary server is detected. To avoid any
performance overhead during failure-free periods, ST-TCP
requires only a few changes on the server-side TCP that do
not affect the normal flow of TCP byte stream.

The main idea in the design of ST-TCP is that one or
more backup servers receive the TCP segments exchanged
between a client and a primary server by simply tapping
the TCP byte stream at an intermediate point in the con-
nection between the client and the server. Figure 1 illus-
trates this idea. Since every TCP segment exchanged be-
tween the client and the primary server is tapped in by the
backup server, the backup server learns the complete com-
munication state of the primary server. In particular, we can
guarantee that a non-crashed backup server receives all data
that the primary server receives. In addition, it also receives
all data that the client receives.

Client Primary
TCP connection

Backup

Tap

Figure 1. Tapping TCP byte stream.

In case a server is completely deterministic, a backup
server can keep its state consistent with the state of the pri-
mary server by executing the same sequence of requests as
the primary server does. Many servers are however non-
deterministic, e.g., timestamps or ids used by the backup
server may not be exactly the same as those used by the
primary server. Replication of non-deterministic servers
has been researched extensively. To keep the primary and
backup servers in sync, one can combine this protocol with
a leader/follower consistency protocol (e.g., [6]). Consis-

tency can be achieved without manually changing the server
application code. In what follows, we assume that applica-
tions are deterministic or a leader/follower protocol is used
to keep the state of the primary and the backup consistent.

A backup server can detect the failure of a primary server
when its state becomes inconsistent with, or its (suppressed)
replies differ from, that of the primary server. This allows
a backup server to detect failures of the primary server that
are different from crash or performance failures. Crash and
performance failures of the primary server are detected by
the backup using a simple timeout mechanism. For this rea-
son, the primary server sends periodic heartbeat messages
to the backup server. We enforce consistent behavior by
making sure that the primary server is never incorrectly sus-
pected to have failed (see Section 3.2).

3.1 Ethernet Tapping

Most local area networks are Ethernet based. Therefore,
we assume that servers communicate with clients via a lo-
cal area Ethernet. The clients are connected to the Ethernet
by one or more gateways. This means that all TCP traffic
between the server and the clients can be tapped from the
local Ethernet.

Ethernet has originally been a broadcast medium. Broad-
cast media simplify the tapping of communication streams.
[11] discusses different tapping architectures for broadcast
Ethernet. However, in recent years most Ethernet instal-
lations have been converted to switched Ethernet (see Fig-
ure 2). Logically, an Ethernet switch replaces the broadcast
medium by a crossbar. This prevents a backup node from
tapping the traffic of the primary node since a node only
receives packets addressed to itself.

Client

Client Primary

Backup

Static ARP entry: GVI −> GME

VNIC: GVI, GME
VNIC: SVI, SME

Static ARP entry: SVI −> SME

VNIC: SVI, SMEVNIC: GVI, GME

Gateway Switch...

...

Figure 2. Ethernet switch tapping architecture.

Some managed Ethernet switches provide an option to
forward traffic flowing from/to a port to some other port.
This feature permits us to sniff all traffic between the server
and the clients. To facilitate tapping in switched Ethernet
without this capability, we also investigated a solution that
maps a unicast IP address to a multicast Ethernet address to
ensure that all packets received or sent by the primary are
forwarded by the Ethernet switch to the backup.

The service provided by the primary can be accessed by
the clients via a static virtual IP address, �� �. We create
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at the backup and the primary node a virtual network in-
terface (VNIC), i.e., a software NIC mapped to a hardware
NIC. We assign �� � to these VNICs. Further, we assign a
fixed multicast Ethernet address ��� to these VNICs on
the primary and backup machines. The service IP address
�� � is statically mapped onto the multicast address ���

in the gateway ARP table. This static mapping is necessary
since the IPv4 router requirements RFC [3] disallows an IP
router to accept a multicast link layer address in an ARP
reply. The mapping of �� � to ��� permits the backup
node to tap all traffic from the clients to the server.

To tap the traffic from the primary server to the clients,
we similarly create VNICs in the gateway and backup nodes
and assign each with a static virtual IP address (�� �) and
a fixed multicast Ethernet address (���). A static �� �
to��� mapping is created in the primary ARP table. The
backup node can in this way tap all traffic from the primary
to the client. Note that most gateway machines run modern
operating systems like Linux, because they often provide
additional services like firewall and/or VPN functionality.
Hence, we can install VNICs on these gateways.

3.2 System Architecture

Dependable systems often have the requirement of hav-
ing no single point of failure. Avoiding a single point of
failure can increase the availability of a system and sim-
plifies the replacement of components. ST-TCP supports
system architecture without a single point of failure like the
one depicted in Figure 3. All components are replicated.
Primary and backup are connected to two switches that are
connected via two loggers to two gateways. One can use
the two links to increase the bandwidth. In particular, for
full-duplex Ethernet links to the server one would configure
ST-TCP such that the backup receives the packets to and
from the server on two separate Ethernet links.

Primary

B

Logger

ackup

Power
Switch

Power
Switch

SwitchGateway

Figure 3. System Architecture without a single point of
failure.

For ST-TCP to work correctly, we need a perfect fail-

ure detector. In particular, the backup is never permitted to
suspect the primary if the primary is still up. To do that,
we can use the perfect failure detector protocol of [9] that
was designed for this situation. Alternatively, we can use
controllable power switches. If the backup suspects the pri-
mary, it switches off the power of the primary. This makes
sure that the primary is crashed before the backup takes over
the IP address of the service.

As we will describe in Section 4, the backup asks the pri-
mary for packets that it failed to receive from the Ethernet
(but were received by the primary). In case such an omis-
sion failure happens together with a crash of the primary,
the backup can in certain cases not take over as primary
because the complete communication state is not known to
the backup. To mask such double failures, one can insert a
logger into the network [11]. This logger machine logs all
packets on the Ethernet in its main memory for a bounded
amount of time. Since the backup will suspect the primary
within a bounded amount of time after the primary crashed,
the backup can recover all missing packets from the logger.

The logger introduces a very small delay but does not
reduce the bandwidth. The memory needed by the logger
depends on the maximum bandwidth of the Ethernet and
the maximum failover time. Since all traffic to and from the
server has to flow through the logger(s), the logger(s) has
(have) the complete communication state. By having two
loggers, or a bypass network for a failed logger, one can
prevent the logger from becoming a single point of failure.

In addition to avoiding single points of failure, we want
to avoid the introduction of performance bottlenecks, i.e.,
new CPU or bandwidth limitations due to replication. For
half-duplex Ethernet one Ethernet NIC has sufficient band-
width to tap the traffic between the primary and its clients.
In full-duplex mode the bandwidth of a single Ethernet NIC
might not be sufficient to capture the complete traffic. In the
latter case, one can use one Ethernet NIC to tap the traffic
for each data direction. Note that due to other bandwidth
limitations (e.g., WAN bandwidth limitations) one might
not always need additional NICs.

Due to the tapping of the Ethernet packets from the pri-
mary to the clients, the backup system needs additional
CPU resources. Modern operating systems support the par-
allel processing of network packets. Hence, the addition of
CPUs to the backup system can address CPU limitations in-
troduced by the Ethernet tapping. Note that the addition of
CPUs can reduce new CPU bottlenecks even if the applica-
tion itself is only single threaded.

4 Protocol Details

We will describe the protocol details of ST-TCP by fo-
cusing on three important design issues: (1) starting the pri-
mary and backup servers, (2) operation of the primary and
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the backup servers during failure-free periods, and (3) fail-
ure detection. In this section, we will focus on the protocol
design issues. Implementation details are given in Section
5.

4.1 Initialization

The primary and the backup are configured as described
in the previous section so that the backup network inter-
face receives all packets destined for the primary. Further,
the backup’s network interface is setup such that all pack-
ets from or to the server are accepted by it and passed to the
higher layers in the TCP/IP stack. To ensure that the backup
can take over a TCP connection from the primary in case of
a primary crash, it needs to shadow the state of that connec-
tion, i.e., maintain a consistent state of that TCP connection
so that on failover it is indistinguishable from the primary
to the client.

The server application is started on both the primary and
the backup. Since it is the same application, the same listen
port is used on both the machines. To avoid any conflicts,
we assume that the backup is running on a dedicated ma-
chine, and not used for any other purpose.

In addition to IP addresses and port numbers, another
stateful entity in a TCP connection that the backup must
be aware of is the sequence numbers used in that connec-
tion. The backup must either use the same sequence num-
bers as the primary or be able to map its sequence numbers
for that connection to those of the primary so that the con-
nection migration works. In ST-TCP, backup uses the same
sequence numbers as those used by the primary for a shad-
owed TCP connection. The steps involved in the initializa-
tion of such a TCP connection are described below.

1. To initiate the TCP connection, the client sends a SYN
segment to the primary. The backup also receives this
SYN segment.

2. In response to the SYN, the TCP layer in both the
primary and the backup sends a SYN/ACK to the
client. This SYN/ACK is dropped (suppressed) on the
backup. The primary’s SYN/ACK is received by the
client.

3. The client’s ACK segment, completing the three way
handshake, is used by the backup to modify its own ini-
tial sequence number and other variables related to the
initial sequence number. After this point, the backup’s
sequence numbers match those of the primary for this
connection.

4.2 Failure-free Period

During failure-free period, all TCP segments exchanged
between a client and a server are received by the backup

server. The backup server executes as a normal TCP server,
except that all replies from the backup server to the client
are dropped. ST-TCP has incorporated two additional func-
tionalities – (1) ensure that the state of the backup server is
consistent with the state of the primary server, and (2) detect
failures of (primary or backup) servers.

For simplicity, let us assume that the server application is
deterministic. This implies that the (suppressed) replies of
the backup server will be identical to the replies of the pri-
mary server, as long as the backup server receives the same
sequence of bytes from the client as the sequence of bytes
received by the primary. In general, this will be the case
since the same sequence of bytes that are received by the
primary server are tapped by the backup server. However,
it is possible that some TCP segments, received correctly
by the primary, get lost before reaching the backup server.
For example, this can happen if the IP stack on the backup
server drops IP packets because of an IP-buffer overflow.
Since the primary server receives these segments, it will ac-
knowledge these bytes. This will result in the client-side
TCP purging those segments from its send buffer. As a re-
sult, there is no way for the backup server to retrieve those
lost TCP segments.

We address this problem and the issue of server fail-
ure detection by establishing an alternate connection be-
tween the primary and the backup server, and modifying the
TCP buffer management in the primary server. A separate
UDP channel is established between the primary and the
backup servers when these servers are started. This chan-
nel is used to make sure that the backup server receives all
TCP segments from the client that are received by the pri-
mary server. The backup server uses this channel to send a
request to the primary server asking for missing TCP seg-
ments, when it discovers that it has missed some TCP seg-
ments. This channel is also used by both the primary and
the backup servers to monitor each other by sending peri-
odic heartbeat (HB) messages. Implementation details of
how this alternate channel is established are given in Sec-
tion 5.

During failure-free periods, the primary server needs to
make sure that before it discards a received TCP byte from
its receive buffer, the backup server has already received it.
So, while in standard TCP, a byte received from the client is
discarded once it has been read by the application, ST-TCP
requires that this byte, in addition, be acknowledged by the
backup server before being discarded. The backup server
uses the alternate communication channel to acknowledge
(to the primary) the sequence numbers of the bytes it has
received from the client. The actual strategy for when and
how this acknowledgment is sent is described later.

Figure 4 shows the receive buffer of the primary ST-
TCP server. For comparison, we have also included the
corresponding receive buffer of a standard TCP server. As
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shown, the receiver buffer of the primary ST-TCP server
maintains an additional pointer (LastByteAcked). This
pointer is the sequence number of the last byte acknowl-
edged by the backup server to the primary server. Last-
ByteRead is the sequence number of the last byte read
by the application, NextByteExpected is the sequence
number of the next byte the TCP server expects to receive,
and LastByteRecd is the sequence number of the last
byte received by the TCP server.

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

LastByteRecdLastByteRead

LastByteAcked NextByteExpected

(a) (b)

LastByteRecdLastByteRead

NextByteExpected

Figure 4. Receive buffer of TCP server: (a) Standard
TCP, (b) ST-TCP.

In general, the LastByteAcked can be smaller than,
equal to, or larger than the LastByteRead. If it is smaller
than LastByteRead, all bytes whose sequence numbers
fall between it and LastByteRead are the bytes that
a standard TCP server would have discarded, but a pri-
mary ST-TCP server does not discard. A primary ST-TCP
server discards all those bytes whose sequence numbers
are smaller than or equal to LastByteRead or Last-
ByteAcked, whichever is smaller. This strategy ensures
that any TCP byte that backup fails to receive from its
tapped byte stream can be retrieved from the primary server.
In general, we expect that the backup server will be able to
receive all the bytes from its tapped TCP stream, and there
will not be a need for it to request the bytes from the primary
server.

Depending on the acknowledgment strategy that the
backup server adopts, it is possible that some bytes will
be kept longer in the receive buffer of the primary ST-TCP
buffer than a standard TCP buffer. This means that the
buffer may fill up sooner in ST-TCP than in standard TCP.
Also, this will reduce the advertised window size that the
TCP server sends to client. To compensate for this and to
ensure that the ST-TCP behavior remains as close to stan-
dard TCP behavior as possible, we double the space allo-
cated for the receive buffer. The Berkeley socket interface
allows this on a per connection basis.

With more buffer space available for the receive buffer,
the extra buffer space can be managed in a number of ways.
We use the simplest approach here. The additional space is
used only for storing bytes that have not been acknowledged
by the backup server but that have been read by the server
application. In other words, ST-TCP logically maintains
two receive buffers, each with their own limits. The man-

agement of the first buffer is identical to the management of
the receive buffer in standard TCP, except that some bytes
may move to the second buffer before being discarded.

This simple approach ensures that the behavior of the
ST-TCP server is identical to the behavior of a standard
TCP server from a client’s perspective. As long as the
backup server keeps sending acknowledgments to the pri-
mary server at regular intervals, there will be no difference
between the standard TCP server and the ST-TCP server as
far as the advertised window size, bytes acknowledged, or
any TCP timer calculations are concerned. In other words,
during failure-free periods, a client will see no difference
between a standard TCP and an ST-TCP.

The behavior of ST-TCP will differ from that of standard
TCP if the second buffer fills up. This can happen when
the backup server is too slow in acknowledging the bytes
it has received, or if it misses some bytes from its tapped
TCP byte stream and requests a transmission of those bytes
from the primary server. We address this by instituting an
efficient acknowledgment strategy in the backup server that
is described later in this section.

Clearly, there are other approaches for managing the two
buffers that might improve the overall performance of TCP.
For example, it is possible to store extra bytes in the second
buffer and advertise a larger window size, if the first buffer
fills up and there is enough space available in the second
buffer. Although these approaches may give better perfor-
mance results in some situations, they are more complex to
implement, and at present, they are not considered.

4.3 Synchronizing The Backup Server

The primary server waits for acknowledgments from the
backup server before deleting corresponding bytes from its
second receive buffer. The alternate UDP channel between
the primary and the backup servers is used for this purpose.
The backup server sends acks over this channel containing
a sequence number that is one less than its NextByteEx-
pected value. The frequency with which these acks are
sent has a significant effect on the ST-TCP performance. If
these acks are sent very frequently, e.g., after receiving ev-
ery byte, the primary server may end up spending too much
time in processing these acks, thus affecting the net TCP
throughput. On the other hand, if these acks are sent only
once in a while, the second receive buffer in the primary
server will fill up, again affecting the net TCP throughput.

The backup server in ST-TCP uses a very simple strat-
egy to send these acks. Instead of sending an ack after re-
ceiving every byte, the backup server maintains an integer
variable, LastByteAcked. The value of this variable is
the sequence number of the last byte that was acknowledged
to the primary server. An ack is sent whenever any of the
following events occur (X is a configuration parameter):
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� NextByteExpected� LastByteAcked� X, or

� a fixed time interval SyncTime has elapsed since
sending the last ack.

The first event corresponds to the condition when the
backup server has received at least X bytes (in the correct
order) from the client since sending the last acknowledg-
ment. The second event corresponds to the condition when
less than X bytes (in the correct order) are received from the
client in the last SyncTime time units, since sending the
last acknowledgment.

The value of X naturally depends on the size of the sec-
ond receive buffer in the primary server. As a start, we have
chosen to fix X as three-fourths the size of the second buffer.
For example, if the size of the second buffer if 4 KB, X �
3 KB. The value of SyncTime depends on how frequently
the backup server and the primary server need to monitor
each other. We use the acks sent by the backup server and
its response sent back by the primary (which also serve as
heartbeat messages) as a mechanism to monitor the liveness
of the primary and the backup servers. We have experi-
mented with different values of SyncTime ranging from
50 milliseconds to 5 seconds.

The extra traffic introduced by the alternate UDP channel
is quite insignificant. For example, assume that the total
length (including all header overheads down to Ethernet) of
an ack packet is 128 bytes, and there is only client traffic
on the LAN (worst case). In this case, one ack packet for
every 3 KB of client data increases the LAN traffic by only
4.17%.

4.4 Failure Detection

We assume that the computers (primary or the backup
servers) have crash/performance failure semantics[8]. The
failure detection is based on a timeout mechanism. The
backup monitors heartbeat (HB) messages from the primary
to detect primary’s failure and take over its TCP connection.

The primary monitors the HB messages from the backup
and the size of its second receive buffer to determine if the
backup has failed. On detecting failure of the backup, the
primary transitions to non-fault-tolerant mode.

The failure detection mechanism will eventually suspect
a crashed computer. However, it might wrongly suspect
non-crashed computers. We convert wrong suspicions into
correct suspicions by switching off the power of a suspected
computer (see also Section 3.2) before propagating the sus-
picion .

5 Implementation

We have implemented a prototype of ST-TCP. This pro-
totype runs on Linux operating system (kernel 2.2.18), and

involved modifying the TCP/IP stack in the kernel. On the
backup ST-TCP server, changes were made to synchronize
the initial sequence number with that of the primary on TCP
connection initialization and to discard TCP segments to the
client during failure free periods.

Recall that the primary and the backup servers maintain a
UDP channel to help the backup server recover from tempo-
rary communication failures of the tapped TCP byte stream,
and monitor each other by exchanging Heartbeat messages
containing sequence number information. There are at least
two ways to establish this UDP channel. One way is to es-
tablish this channel in the kernel itself, between the backup
and the primary. The advantage of this approach is that se-
quence number data does not have to be copied from the
kernel space to user space. However, it is best to avoid
changes in the kernel whenever possible, and although this
approach is slightly more efficient, it was not followed.

The other approach, which we used, is to implement this
channel in a user process outside the kernel. This requires
that the user process has access to sequence number data.
This is done by using the /proc filesystem in Linux which
allows the user process to open a file and read this data. In
our prototype implementation, when the backup takes over,
it sets a flag in the /proc filesystem to indicate to the ker-
nel that the backup has taken over. As soon as the flag is set,
the kernel starts sending the packets to the client instead of
dropping them.

6 Performance

To provide a proof of concept, we measured the perfor-
mance of ST-TCP with simulations of applications repre-
senting different communication characteristics. The main
focus of these experiments is to show that no changes are
required in the client, there is no deviation from standard
TCP during failure-free periods, and that the failover from
primary to backup is fast.

Three different applications, with differing communica-
tion behaviors, are considered. The first application (Echo)
consists of a client sending a small message (about 150
bytes) to the server, and the server responding back with the
same message to the client. The client waits to receive the
echo response before issuing another request. One run of
this application involves 100 such message exchanges. The
second application (Interactive) consists of a client sending
a small request (about 150 bytes) and the server responding
with an appropriate reply consisting of moderate size data
(10 KB). One run of this application also involves 100 re-
quests and the corresponding responses. A new request is
sent only after the response to the previous one is received.
The third application (Bulk transfer) consists of a client
sending a small request (about 150 bytes) to the server, and
the server responding with a large data file. Files sizes of
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1 MB, 5 MB, 20 MB and 100 MB are used for this exper-
iment. As an analogy, the communication pattern of Echo
is similar to the one displayed by telnet, the communi-
cation pattern of Interactive is similar to the one displayed
by http, and the communication pattern of Bulk transfer
is similar to the one displayed by ftp.

Experimental Setup. We use three machines to run the
experiments. The primary and the backup are 800 MHz
AMD Athlon PCs, with 512 KB of cache and 256 MB of
memory. Both the machines have Linux kernel 2.2.18 in-
stalled on them. The client is a 900 MHz Pentium III Lap-
top also running Linux (although it could be running any
OS that provides a TCP/IP stack). All the machines have a
10/100 Mbit network interface card. These three machines
are placed on the same LAN using a 10/100 Mbit Ether-
net hub. Since the hub broadcasts all traffic on all ports,
the backup can tap into all of the primary’s network traffic.
Using an Ethernet switch will lead to a higher throughput.

For each of the three applications, we performed two sets
of measurements. The first one measures the performance
overhead of ST-TCP over standard TCP when there are no
failures in the system. As mentioned earlier, an important
goal in the design of ST-TCP is to keep this overhead in-
significant. This measurement is done by separately run-
ning the applications, with standard TCP and with ST-TCP.
For ST-TCP the applications are run for varying values of
the HB interval. The second set of performance measure-
ment measures the time it takes for the backup server to take
over the primary server when the primary server crashes.
This is also called the failover time. As mentioned ear-
lier, an important goal in the design of ST-TCP is to keep
this time fairly short, so that a client will barely notice a
disruption in service continuity. For all the applications,
the failover time is measured for various HB intervals. All
measurements taken were repeated at least three times and
their average values were used. Further, the TCP timestamp
option was disabled on the primary and the backup during
these experiments.

6.1 Performance Overhead of ST-TCP

A performance comparison between standard TCP and
ST-TCP is shown in Table 1 when there are no failures. For
all three applications, there is no significant difference be-
tween the average time taken with standard TCP and ST-
TCP. Furthermore, for ST-TCP, the average time taken does
not differ significantly for different values of the HB. This
demonstrates that ST-TCP does not incur any performance
overhead over the standard TCP.

6.2 Failover Time in ST-TCP

To measure the failover time, a primary crash failure was
introduced while the application was running. The failover
time depends on two parameters. First, the time it takes for
the backup to detect a failure, which directly depends on
HB frequency. In our experiments, the backup concluded
that the primary has crashed after missing three consecutive
HB from the primary. For example, with an HB every 5 sec,
the backup will detect primary crash in 15 to 20 seconds
depending on when exactly the failure occurs.

The second parameter determining the failover time is
the increase in the value the TCP retransmission timeout
(RTO) during the time the backup took to detect the failure.
This depends on the RTO when the failure occurred and the
RTO backoff algorithm. In Linux, the RTO is computed us-
ing the round trip time (RTT) and is increased by a factor of
two with every retransmission. The lower and upper bound
for the RTO in Linux are 200 ms and 2 min respectively.

Figures 5.a, 5.b and 6 show the time taken by one run of
each application when there is no failure and in the presence
of a failure. The main observation here is that the failover
time is directly dependent on the HB interval. The graphs
show that the total time taken increases as the HB interval
increases. This is because it takes longer to detect failure
if the HB interval is large. In Figures 5.a and 5.b the upper
curve depicts the failure case. The lower curve shows the
failure free case. The failover time is the difference in the
values of these two curves. Table 2 summarizes the failover
time for the three applications. At a high HB frequency (i.e.,
at a short HB interval), the failover time is only a few hun-
dred milliseconds, which makes it insignificant compared to
the total time taken by the application in most cases. This
is especially true of bulk transfer, Figure 6. Thus, by using
an HB interval of about 50 milliseconds, ST-TCP ensures
that there is no performance overhead during failure-free
periods, and failover is quite short (less than 700 ms). This
demonstrates that ST-TCP provides a fast failover.

7 Conclusions

This paper describes the design, implementation, and
performance evaluation of ST-TCP, which is an extension of
TCP to tolerate TCP server failures. This is done by using
an active backup server that taps the TCP bytes exchanged
between a client and primary TCP server, maintains a con-
sistent state of the TCP connection, and takes over the TCP
connection whenever the primary server fails. This migra-
tion of the TCP connection to the backup server is com-
pletely transparent to the client. Because no changes are
required on the client machine, any TCP client can access
any ST-TCP server.
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Average Total Time (in secs) without failure
Echo Interactive Bulk Transfer Application

Application Application 1 MB 5 MB 20 MB 100 MB

Standard TCP 0.892 2.000 0.640 3.199 12.788 63.952
ST-TCP 5s HB 0.889 2.000 0.639 3.196 12.791 63.950
ST-TCP 1s HB 0.890 1.998 0.641 3.200 12.824 63.883
ST-TCP 200ms HB 0.898 2.000 0.640 3.203 12.794 63.964
ST-TCP 50ms HB 0.896 1.998 0.658 3.201 12.897 63.883

Table 1. Comparison of standard TCP with ST-TCP during failure free period.

(a) (b)

Figure 5. Performance of (a) Echo (upper line: with failure; lower line: without failure) and (b) Interactive (upper line: with
failure; lower line: without failure).

ST-TCP has been implemented in Linux operating sys-
tem by making a few changes in TCP/IP stack in the kernel.
The modified version runs on primary and backup server
machines. A performance measurement from this proto-
type implementation shows that the performance overhead
of ST-TCP over standard TCP is insignificant when there
are no failures. In addition, the failover time exhibited by
ST-TCP is quite low, less that 700 milliseconds when the
primary and backup servers exchange heartbeat messages
every 50 milliseconds.

The key distinguishing features of ST-TCP are com-
plete transparency to the clients, no performance overhead
during failure-free periods, and a fast failover that clients
are unlikely to notice, especially in long-running applica-
tions. The design and prototype implementation of ST-TCP
demonstrates that ST-TCP is a better alternative to tolerate
TCP server failures than other approaches proposed earlier.
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