
A System Demonstration of ST-TCP

Manish Marwah Shivakant Mishra
Department of Computer Science,

University of Colorado,
Campus Box 0430, Boulder, CO 80309-0430

Christof Fetzer
Department of Computer Science,
Dresden University of Technology

Dresden, Germany D-01062

Abstract
ST-TCP (Server fault-Tolerant TCP) is an extension of TCP

to tolerate TCP server failures. Server fault tolerance is
provided by using an active-backup server that keeps track
of the state of a TCP connection. The backup server takes
over the TCP connection if the primary server fails. This
take-over is fast, seamless, and completely transparent to
the client. This paper provides a system demonstration of
a new ST-TCP prototype. The new prototype incorporates
a performance-enhanced architecture and addresses applica-
tion failure scenarios. Five experiments using this prototype
are proposed to demonstrate the following useful features: (1)
Client-transparent, seamless failover; (2) Insignificant per-
formance overhead of ST-TCP during failure-free periods;
and (3) An ability to tolerate all single crash failures at the
hardware and operating system levels, and, most crash fail-
ures at the application level.

1 Introduction
Web-based services have grown rapidly in the past few

years. Products and services sold over the Internet are a sub-
stantial part of the revenue of many companies. In fact, there
are a significant number of companies that solely depend on
the Internet for all their revenues. For these companies in par-
ticular, and all companies in general, service outages can be
very expensive. For example, an hour of service outage re-
sults in an estimated revenue loss of $200K for Amazon Inc.
and $6 million for a brokerage firm [4]. Thus, any improve-
ments made towards limiting such service outages can have
substantial economic benefits. ST-TCP [2] aims to minimize
these service outages by extending TCP to provide TCP con-
nections that can tolerate server failures.

TCP is the protocol of choice for a wide range of popular
distributed applications such as http, ssh, FTP, sendmail and
Samba. It provides a reliable, ordered, connection oriented,
duplex communication stream. In addition, it also provides
flow and congestion control. However, it does not provide
server fault tolerance. Fault tolerance support at the TCP layer
can be very advantageous, and can prove to be more effective
than at the application layer. To enable fault tolerance in a
TCP based client-server application, cooperation of the client
in implementing server fault tolerance is usually required. If
any changes are made to this fault tolerance mechanism that
affect the client, those changes must be propagated to all the
clients. This may be inconvenient at best, and not possible at
worst, since the clients are typically widely spread out, numer-

ous, and usually not under the control of the organization that
runs the servers. However, if fault tolerance is supported at
the TCP layer (transport layer), clients can be made oblivious
to server fault tolerance. Thus, implementing fault tolerance
in server applications (especially ones that have already been
deployed in the field), with fault tolerance support at the TCP
layer, is more effective: no fault-tolerance related changes are
ever required on the clients.

In light of these potential advantages, several research
projects have recently addressed the issue of providing server
fault-tolerance in TCP. These include [7], [6], [5], [3], [1], and
our system ST-TCP[2]. ST-TCP provides server fault toler-
ance with the following important properties: (1) No changes
are required at the client—neither in client-side TCP code,
nor in the client-side application; (2) No functional deviation
and insignificant performance deviation from standard TCP
behavior during normal (failure-free) operation; (3) Fast and
seamless failover during a server failure; and (4) Tolerate all
single crash failures at the hardware/operating system layer,
and most application crash failures.

In [2], we described an initial design and a prototype im-
plementation of ST-TCP, and presented performance measure-
ments of this initial prototype. In this paper, we describe some
design enhancements made to ST-TCP; we describe in detail
how ST-TCP addresses different failure scenarios, including
application failures, and, finally, we describe the details of the
five different experiments that we plan to perform at the con-
ference.
2 Overview of ST-TCP

A schematic of the ST-TCP architecture is shown in Figure
1. It is a primary-backup system with an active backup. The
backup taps the traffic between the client and the primary and
delivers it to a replica of the primary application running on
the backup. The backup uses the same virtual IP address and
port number as the primary. Further, during TCP connection
initialization, the backup changes its initial sequence number
to match that of the primary. This allows it to take over the
client-primary TCP connection in the event of the primary’s
failure. ST-TCP assumes that the primary application is de-
terministic, that is, the primary application and its replica on
the backup go through the same states and produce exactly the
same responses to the client if they are supplied with the same
input TCP stream.

The application on the backup also generates all client re-
sponses, but the network stack on the backup does not send
them to the client. However, the client does receive these

1
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

PClient

Client

rimary

Backup

Heartbeat

...

... Gateway Switch

Figure 1: ST-TCP architecture.

segments from the primary. The acknowledgments sent by
the client in response to these segments serve as acknowledg-
ments for both the primary and the backup In addition, the
primary makes sure that the backup has received a particular
byte from the client before discarding it from its buffer. It uses
extra TCP receive buffer space for this purpose, keeping client
bytes in its buffer until it is notified of their successful receipt
by the backup.

A heartbeat (HB) mechanism exists between the primary
and the backup for detecting failures. When the backup de-
tects that the primary has failed, it stops suppressing the out-
put segments that it generates for the client and takes over the
client-primary TCP connection. The failover appears seam-
less to the client since it takes a very short time and the same
IP address, port number and sequence numbers are used by
the backup. Before taking over, the backup also powers the
primary down to prevent any danger of dual active servers.

3 Enhancements to ST-TCP
TCP state exchange between primary and backup. In

the earlier architecture of ST-TCP [2], the backup received not
only all traffic from the client to the primary, but also all traf-
fic from the primary to the client. We observed that this leads
to an overloaded NIC (network interface card) or/and CPU on
the backup server. In particular, in some scenarios, the backup
starts lagging behind the primary. In the initial ST-TCP proto-
type, the primary interpreted this situation as the backup being
failed. This performance issue was addressed, to some extent,
in the initial ST-TCP prototype by adding an additional NIC
and CPU. One NIC could be used for the client-primary traffic
while the other could be used for the primary-client traffic.

However, during our experiments, we noted that the
backup does not need to receive the primary-client traffic at
all. These segments were used by the backup for the follow-
ing purposes:

1. The backup examines the sequence numbers acknowl-
edged by the primary in these segments to determine if it
has missed any client segments that were received by the
primary (and not by the backup).

2. The backup uses these segments as an indication in some
situations that the primary has crashed, e.g., if the pri-
mary app. crashes but the HB stays up.

Both of these requirements can be addressed without
the backup receiving primary-client segments. This can be
achieved by having the following information included in the
heartbeat messages exchanged between the servers - A) the
sequence number of the latest byte received from the client
(LastByteReceived), and B) the sequence number of the
latest byte written to the TCP send buffer by the application
(LastAppByteWritten). The backup can use the infor-
mation in A and B for recognizing conditions mentioned in 1
and 2 above, respectively.

The current design of ST-TCP implements this new mech-
anism and so does not need any additional hardware. Also,
this ensures that the backup does not receive and process any
more traffic than the primary. However, it is required that the
backup machine be preferably faster or at least as fast as the
primary. Further, the workload on the backup should not be
any more than that on the primary. This would ensure that
during normal operation the backup does not excessively lag
behind the primary, which could make the primary suspect
that the backup has failed. Note that the primary lagging be-
hind the backup is not an issue since the client sends and acks
data depending on the primary’s response.

Heartbeat Mechanism. In the earlier architecture of ST-
TCP [2], the heartbeat (HB) mechanism was implemented by
a UDP channel over the IP link. This mechanism created
some scenarios where a single failure could not be correctly
detected. For example, if the backup NIC failed, the backup
would stop receiving regular heartbeat messages and conclude
that the primary has failed. In this situation, it will shut down
the primary and attempt to take over the TCP connection.

To address this problem, in the new ST-TCP architecture,
the HB is exchanged between the primary and the backup over
two diverse links. One is over the IP link as before; the sec-
ond is over a serial link. This secondary link is established by
directly connecting the serial ports of the two machines using
a null-modem cable. These dual HB links allow the primary
and secondary to continue to exchange HB information de-
spite single failures. It also provides a better failure detection
in some scenarios, e.g., the one outlined above.

Heartbeat carries the following information: (1) Last
byte received from the client (LastByteReceived); (2)
Last ack received from the client (LastAckReceived);
(3) Last byte written by the application to the TCP send
buffer (LastAppByteWritten); and (4) Last byte read
by the application from the TCP receive buffer (LastApp-
ByteRead). In addition, the information about the gener-
ation of a TCP FIN or TCP RST segment is also communi-
cated through the HB. In situations where the primary and the
backup send ping requests to the gateway (see Section 4.3),
the results of these requests are exchanged via the HB.

The serial link uses RS-232 protocol and typically has a
maximum speed of 115.2 kbps. The HB is less than 20 bytes
per TCP connection, and assuming a HB every 200ms, this
translates to a bandwidth of 0.8 kpbs per TCP connection.
Thus, the serial link provides enough bandwidth for around
100 simultaneous TCP connections. If it is expected that the
server will be supporting more connections, then it is best to
use an additional 10/100 mbps Ethernet NIC on the primary
and backup instead of a serial connection. The NICs can be
directly connected by a crossover Ethernet cable.

Application Crash Failure. One limitation of providing
server fault tolerance at the TCP layer is that it may not be
able to adequately handle some server application failures.
In particular, consider a situation where the application run-
ning on one of the servers (primary or backup) crashes, while
its replica running on the other server continues to work cor-
rectly. Server fault tolerance provided at the TCP layer is lim-
ited in its ability to handle all possible scenarios that may arise
under this situation.

2
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

In the new ST-TCP design, we have enhanced failure detec-
tion mechanism to detect most application crash failures. All
application crash failures cannot be detected since ST-TCP
is limited to the information available at the transport layer.
Further, since it is a primary-backup system, if the primary
application and its replica differ in their response, e.g., one
produces a FIN and the other does not, additional information
is needed to determine whether the primary or the backup ap-
plication has failed. The various application failure scenarios
including the specific failure instances that ST-TCP may not
be able to detect are described in the next section.

4 Failure Detection and Recovery

An important goal of ST-TCP is to tolerate all single crash
failures at the server. These failures could be at the hard-
ware, operating system or application level. In the initial ST-
TCP prototype, fault tolerance mechanisms mainly addressed
HW/OS crashes. However, a common failure scenario is one
in which there are no HW/OS crashes and one of the appli-
cation replica (primary or backup) crashes or hangs, while
the other continues to function correctly. This can happen
because of differences in resources available on the primary
and backup server, e.g., the application on the primary may
run out of memory, while the application on the backup has
sufficient memory available. We have enhanced ST-TCP to
address these scenarios.

A crash failure model is assumed (Byzantine failures are
not supported). ST-TCP handles all HW/OS failures, and
all those application failures whose underlying cause can be
traced back to the HW/OS (e.g., failures arising from mem-
ory allocation errors). Specifically, ST-TCP cannot handle
failures resulting from software bugs in the application since
these are likely to manifest both on the primary and the
backup (and thus would count as a double failure). When a
failure occurs at the primary server, the client sees one of the
following two events: (1) No response from the server, e.g.,
a crash failure of the server due to HW or OS crash. (2) A
TCP FIN or RST segment from the server indicating socket
closure, e.g., OS closes socket after application has crashed.

In ST-TCP, single crash failures are masked from the client
by suppressing the corresponding failure event and migrating
the TCP connection to the backup. Table 1 summarizes all sin-
gle crash failure conditions, symptoms observed and recovery
actions taken.

4.1 HW/OS Crash Failures

A HW/OS crash failure causes the primary to stop send-
ing/receiving any data on the TCP connection (i.e. it does not
send or ack any bytes). The backup concludes that the pri-
mary server has crashed if it detects HB failure on both links
(IP and serial links). The underlying assumption here is that
a single failure cannot take both links down, unless the pri-
mary has failed. In this case, the backup takes over the TCP
connection and shuts the primary down.

Similarly, the primary concludes that the backup has
crashed if it detects a HB failure on both links. The primary
shuts the backup down and runs in non fault-tolerant mode.

4.2 Application Crash Failures

Managing application failures is more complicated. Since
HW/OS is functioning correctly in these scenarios, the TCP
layer stays up and HB between the servers also stays up on
both the links. It is convenient to consider two separate cases
here depending on whether the OS cleans up or does not clean
up the failed application state.

4.2.1 Application Crash Failure without Cleanup

In this case, the application has failed, but the TCP socket is
not closed. This can happen if neither the OS detects the appli-
cation failure nor does the application itself close the socket
due to the failure. The key point here is that a TCP FIN or
RST segment is not generated. No data is sent or received
by the application layer, but client bytes received by TCP are
acknowledged by the TCP layer as long as the receive buffer
does not fill up. Further, any bytes already in the send buffer
may be sent out to the client. If the application running on
the primary fails in this manner, the backup can observe one
or both of the following about the primary application: (1)
The application does not read any bytes from its TCP receive
buffer (2) The application does not write any bytes to its TCP
send buffer.

The last byte read and written by the application on the pri-
mary is available to the backup through the HB mechanism.
Failure detection is based on the following two parameters:
(1) The number of bytes that the primary application lags the
backup by (AppMaxLagBytes) (2) The time duration for
which some number of bytes, already read or written by the
backup application, have not been read or written by the pri-
mary application (AppMaxLagTime).

The two threshold values, AppMaxLagBytes and App-
MaxLagTime, are configurable parameters and influence the
failover time. A simple failure detection criteria would be: the
primary application is considered failed if it lags behind the
backup application by AppMaxLagBytes for a short dura-
tion of time (e.g., a few sec.) or, a particular byte read/written
by the primary application lags the corresponding one at the
backup by AppMaxLagTime. It is possible that the primary
application has not really failed but just degraded in perfor-
mance. However, if the failure criteria are met, the perfor-
mance degradation is considered to be severe enough to war-
rant a failover. There is no danger of a dual active server here,
because the backup powers down the primary [2] before tak-
ing over the TCP connection. The primary uses a similar cri-
teria for detecting failure of the backup application.

In some instances - when there is no activity on the con-
nection - failure detection may be delayed. However, these
failures will be detected when the connection is used again. It
should be noted that ST-TCP detects all application failures of
the type discussed in this subsection, that is, where a FIN or
RST segment is not generated.

4.2.2 Application Crash Failure with Cleanup

In this case, the application failure is detected by the OS. As
part of the application cleanup, the OS closes the TCP connec-
tion. An example of such a failure is an application crashing
as a result of receiving a SEGV signal. Such a failure could
also occur if the application detects a failure (e.g., a memory

3
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Failure Location Symptom Recovery Action Taken
1 HW/OS crash failure Primary Backup detects HB failure on both links Backup takes over the TCP connection and

shuts primary down
Backup Primary detects HB failure on both links Primary runs in non fault-tolerant mode and

shuts backup down
2 Application failure (TCP

FIN/RST not generated)
Primary Primary app. lags backup app. by AppMaxLag-

Bytes or by AppMaxLagTime (see Section 4.2.1)
Backup takes over TCP connection and shuts
primary down

Backup Backup app. lags primary app. by AppMaxLag-
Bytes or by AppMaxLagTime (see Section 4.2.1)

Primary runs in non fault-tolerant mode and
shuts backup down

3 Application failure (TCP
FIN/RST generated)

Primary TCP FIN/RST generated at primary but not at
backup; same symptoms of app. failure as in 2 above
(see Section 4.2.2)

FIN/RST suppressed for MaxDelayFIN; if
failure detected, backup takes over the TCP
connection and shuts primary down

Backup TCP FIN/RST generated at backup but not at pri-
mary; same symptoms of app. failure as in 2 above
(see Section 4.2.2)

FIN/RST discarded; if failure detected, pri-
mary runs in non fault-tolerant mode and
shuts backup down

4 NIC or cable failure Primary Both primary and backup detect HB failure on IP
link (but not on serial link); backup receives client
data but primary does not, or, backup can ping gate-
way, but primary cannot (see Section 4.3)

Backup takes over the TCP connection and
shuts primary down

Backup Both primary and backup detect HB failure on IP
link (but not on serial link); primary receives client
data or acks but backup does not (see Section 4.3)

Primary runs in non fault-tolerant mode and
shuts backup down

5 Temporary Network failure Backup HB on both links up; backup does not receive some
client bytes received by primary

Backup server requests and receives missed
bytes from the primary

Primary Primary misses bytes; client retransmits None required; normal TCP behavior

Table 1: Single Failure Scenarios

allocation error) and closes the TCP connection.
The main challenge in detecting this kind of failure is to

be able to distinguish between a TCP FIN generated due to
a normal closure of the socket and that generated due to an
abnormal one. To understand the complexity of this scenario,
consider that the application on the primary fails, and the TCP
on primary generates a FIN as a result. If this FIN is sent to the
client, the TCP connection will be terminated. This is despite
the fact that the application on the backup is running correctly.

To address this scenario, ST-TCP requires that a server
generating a FIN should immediately communicate the FIN
to the other server through the HB. If the primary generates a
FIN, it sends it to the client as soon as it learns (via HB) that
the backup has also generated a FIN. This scenario is a normal
closure of the TCP socket. While a failure can also result in
both the primary and the backup producing a FIN, it is a case
of double failure and is not currently handled by ST-TCP.

The interesting cases are where the primary and the backup
disagree, i.e., only one of them produces a FIN. In this case
the server generating the FIN delays sending it to the client
for a short period of time, MaxDelayFIN, e.g., 1 minute.
This is to account for cases where a failure may be detected
via other indications during this time. In fact, by delaying
the FIN temporarily, this failure scenario during the delayed
time period becomes identical to the one described in Section
4.2.1, where no FIN is produced. However, if at the end of
MaxDelayFIN a failure is not detected, it is assumed that
the behavior of the primary is correct.

We decided not to do a failover whenever the primary pro-
duced a FIN and the backup did not, since it is quite possible
that it is the backup that has failed and hence not produced
a FIN for normal socket closure. It should be noted that the
primary always immediately sends out a FIN if it has already
received a FIN from the client. Furthermore, note that during
normal operation – when neither the primary nor the backup
has failed – the FIN is not delayed by MaxDelayFIN. This
only happens if there is a failure.

All failure scenarios where only one of primary or backup
generates a FIN are summarized below.

1. Primary application has failed; Backup is working cor-
rectly.

Primary generates a FIN, but backup does not gener-
ate a FIN. Here the primary application fails and a FIN
is generated. The primary delays sending the FIN for
MaxDelayFIN time units. During this time it is likely
that the backup will detect the primary failure (if the ap-
plication performs read/write operations on the socket).
The backup will shut the primary down and take over the
TCP connection. However, if the failure is not detected
within MaxDelayFIN time units, the primary will send
out the FIN to the client.

Primary does not generate a FIN, but backup gener-
ates a FIN. Here the primary application fails and a FIN
is not produced. The backup generates a FIN due to nor-
mal socket closure. This FIN on the backup is dropped
like any other segment sent to the client. The FIN is
treated specially here, and although it has a sequence
number, it is not considered in the failure detection crite-
ria. The backup will detect the primary application fail-
ure if there are other bytes that the backup application
reads/writes but the primary does not. In that case, it will
shut off the primary, take over the TCP connection, and
retransmit the FIN (in fact, the backup has already been
retransmitting and dropping the FIN).

2. Primary is working correctly; Backup application has
failed.

Primary generates a FIN, but backup does not gen-
erate a FIN. In this case, the primary produces a FIN
due to normal socket closure, but since the backup ap-
plication has failed, the backup does not generate a FIN.
Here the primary will wait for at most MaxDelayFIN
time units before sending out the FIN. Meanwhile, if it

4
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

detects backup’s application failure, it will send out the
FIN immediately.

Primary does not generate a FIN, but backup gener-
ates a FIN. Here the backup TCP generates a FIN due
to a failure. This FIN is suppressed. The primary tran-
sits to non fault-tolerant mode. This happens at MaxDe-
layFIN if the primary is unable to detect backup’s ap-
plication failure; otherwise, it happens at the time the
primary detects backup’s application failure.

In the application failure cases described above, the fail-
ures are very likely to be detected if the application is read-
ing/writing bytes when the failure occurs. However, if there
is no application activity, the application failure may not be
immediately detected. This is not a problem for application
failures described in the previous section where a FIN is not
generated (since failure will be detected when there is some
application activity). However, in application failure situa-
tions where a FIN is generated, it may not be possible to con-
clusively distinguish between a normal closure and a failure
based solely on information at the TCP layer. This is true for
any primary/backup system.

To be able to detect application failures under all circum-
stances, either additional backup servers have to be deployed,
or some additional information is needed from the applica-
tion layer. Deploying additional backup servers will allow a
majority decision to be taken in case of a conflict between
the primary and a backup. For additional information from
the application layer, an application can support a watchdog
mechanism where the application continually sends a heart-
beat to a watchdog. The watchdog monitors the application
health and informs ST-TCP in case of any failure suspicion.

4.3 Local Network Failures

In this section we discuss network failures that are local
to the primary or the backup server, e.g., a NIC failure in a
server. We have assumed that both the primary and the backup
have a single NIC. Recall from Section 3 that the HB between
the primary and the backup is exchanged on two separate links
– an IP link and a serial link.

If a local network failure occurs, only the HB on the IP link
fails. The servers continue to exchange the HB on the serial
link. This enables the two servers to determine that a local
network failure has occurred. To determine if the failure has
occurred at the primary or at the backup, the servers examine
the “last client byte received” information (LastByteRe-
ceived) in the HB. If the client is sending data, then the
server with the NIC failure will not receive them, while the
server without NIC failure will receive them. Based on the
LastByteReceived in the HB, the primary or the backup
can determine if the other is lagging behind in terms of the
client bytes received. For example, if the backup determines
that the primary has lagged behind by greater than a thresh-
old number of bytes, or, that a particular byte has not been
received by the primary for more than a threshold period of
time, then it shuts the primary down and takes over the con-
nection. These threshold values are configurable. Similarly,
the primary shuts the backup down if it determines that the
backup is lagging behind.

One limitation of this failure detection method is that it
depends on the client sending data. There are several applica-
tions, e.g. FTP, that do not require client to send a lot of data.
In such cases, this method of failure detection does not work.
This problem can be partially solved by having the primary
and backup look at the acks received from the client. If the
backup NIC is down, the latest client ack information (Las-
tAckReceived) received by the primary from the backup
via the HB on the serial link will indicate that the backup is
behind. However, this does not work if the primary NIC has
failed. If the primary NIC is down, the client will not receive
any bytes from the server and thus not send any acks.

We have added another mechanism in the new version of
ST-TCP to address this case. When the servers detect a failure
of the HB on the IP link but not on the serial link, both the
primary and the backup send ping requests to their gateway.
The results of these requests - that is, if they succeeded or not
- are exchanged in the HB via the serial link. If ping requests
continue to fail for the primary but succeed for the backup, the
backup takes over the TCP connection and shuts the primary
down.

Temporary local network failures. Temporary failures in
the NIC or the IP stack (e.g. buffer overflow) can lead to pack-
ets being dropped. HB stays up on both the links in this case.
If the packets are dropped at the backup, the backup requests
the primary for the missing bytes. There may be cases where
the backup takes a long time to catch up or is unable to catch
up. If the additional receive buffer space at the primary fills
up, the primary considers the backup failed and runs in non
fault-tolerant mode. Note that temporary network failures at
the primary are not an issue since these will be taken care of
in the normal course of TCP operation – the primary does not
ack these bytes and therefore the client will retransmit.

If the primary crashes while the backup is retrieving missed
bytes from it, the backup has no way of obtaining these bytes,
since primary has already acked them. For critical applica-
tions, a logger can be added to the system to address this
output commit problem as described in [2]; for other appli-
cations, ST-TCP treats this failure as unrecoverable.
5 Planned Demonstrations

We present five experiments that we plan to demon-
strate live at the symposium. These experiments are de-
signed to demonstrate different aspects of ST-TCP: (1) Client-
transparent, seamless failover to the backup server when the
primary fails; (2) Dependence of failover time on HB fre-
quency; (3) Insignificant overhead of ST-TCP during failure-
free operation; (4) Failure detection and recovery in case of
application crash failures; and (5) Failure detection and re-
covery in case of NIC failures.

Experimental Setup. Figure 2 shows the experimental
setup used for the experiments. An Ethernet switch is used
to connect the primary and the backup. We also have the
client directly connected to the same switch. The primary and
backup are installed with a modified Linux kernel, incorporat-
ing changes required to support ST-TCP. Virtual NICs are cre-
ated using the IP aliasing feature of the Linux kernel on both
the primary and backup machines. These VNICs are assigned
serviceIP IP address which is the address that the clients con-
nect to for receiving service. The primary and backup are

5
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

also associated with a multicast Ethernet address – multiEA.
There is a static ARP protocol entry created on the gateway
(the client in this case) mapping serviceIP to multiEA. Any
IP packet destined for serviceIP is sent to the multiEA Eth-
ernet address which allows both the primary and the backup
to receive all packets sent to the serviceIP address. The HB
is exchanged between the servers over the IP link. A dupli-
cate copy of the HB is exchanged over a secondary link as
described in Section 3.

P

Client

rimaryBackup

ClientIP

Secondary Link

HB

HB

ServiceIP, MultiEA

ServiceIP−>MultiEA
ARP entry (static):

PrimaryIP
ServiceIP, MultiEA

BackupIP

Switch
Ethernet

Figure 2: Experimental setup.

Demo 1: Client-Transparent Seamless Failover. The
goal of this demonstration is to show that in the event of the
primary server failure, ST-TCP provides a client-transparent,
fast and seamless failover to the backup. A GUI client-server
application is used in this demonstration. The client continu-
ally requests and receives data from the server. As the client
receives the data, it dynamically updates a pie chart reflecting
the percentage of the data already received. While the transfer
is in progress, the primary server is crashed so that the TCP
connection fails over to the backup. This failover process is
seamless to the client as is apparent by observing the progres-
sion of the pie chart.

This demonstration also shows that in the absence of ST-
TCP, even if a hot backup is available, the failure of the server
would lead to a disruption in the service and the client would
have to re-connect, unlike in ST-TCP where the failure at
worst appears as a glitch to the user.

Demo 2: Dependence of Failover Time on HB Fre-
quency. In this experiment, we examine the dependence of
the failover time on the HB frequency. One constituent of the
failover time is the failure detection time. The other depends
on how much the backup and the client TCP have backed off
during the time it took to detect the failure. Recall that TCP
backs off exponentially as retransmissions fail; if the primary
fails, both the backup and the client (assuming both the server
and the client are sending data) would start retransmitting and
backing off (in case of backup, since it has not taken over
the connection yet, the retransmissions get discarded). Once
the failure is detected and the backup takes over, there is still
a delay until the next client or backup retransmission before
the TCP stream gets re-started. In this demonstration, we try
three different values of HB period (200ms, 500ms and 1s)
and measure the failover times in each case.

Demo 3: Insignificant Overhead during Normal Oper-
ation. In this demonstration, a large file (about 100 MB) is
transferred to the client both with ST-TCP enabled and with
ST-TCP disabled. We compare the time taken for the file

transfer in both of these cases. The aim of this experiment
is to show that under normal operation (no failures), the over-
head of using ST-TCP is negligible.

Demo 4: Application Crash Failure. The goal of this
demonstration is to show that ST-TCP tolerates application
failures. The GUI application, used in Demo 1 above, is used
here as well. Two different scenarios of application failures
are simulated. In the first scenario, the application on the pri-
mary crashes but the socket is not closed, and hence a FIN
segment is not generated. In the second scenario, the OS
cleans up the application and closes the socket, thus, gener-
ating a FIN. In both of these scenarios, the application failure
is detected and the TCP connection is migrated to the backup.

Demo 5: NIC Failure. This demonstration has two parts.
In the first part, we simulate a failure of the NIC at the pri-
mary; in the second, that of the backup. In both these cases
the HB on the IP link between the servers fails, but the one on
the secondary link stays up. The servers use the information
in the HB to determine whether the failure has occurred at the
primary or at the backup.

6 Conclusions
TCP is the most popular transport-level protocol for con-

structing distributed applications over the Internet. Current
fault tolerance techniques typically require software updates
both at the client and the server. This limits the applicabil-
ity of these techniques. Recently, several research projects
have addressed this problem by providing server fault toler-
ance support at the TCP layer. ST-TCP is one such effort to
address this problem.

This paper describes lessons learned from using ST-TCP
under different computing environments. In particular, the pa-
per reports on three issues. First, it reports on peculiar behav-
ior of servers under specific computing conditions and dis-
cusses design enhancements that ST-TCP has undergone to
address them. Second, the paper discusses in detail how ST-
TCP addresses different failure scenarios, particularly appli-
cation failures and local network failures. Finally, the paper
describes five experiments that will be demonstrated at the
conference.

References
[1] R. R. Koch, S. Hortikar, L. E. Moser, and P. M. Melliar-Smith. Transparent TCP

connection failover. In Proceedings of the IEEE Int. Conf. on Dependable Systems
and Networks, San Francisco, June 2003.

[2] M. Marwah, S. Mishra, and C. Fetzer. TCP server fault tolerance using connection
migration to a backup server. In Proceedings of IEEE Int. Conf. on Dependable
Systems and Networks, San Francisco, June 2003.

[3] M. Orgiyan and C. Fetzer. Tapping TCP streams. In Proceedings of the IEEE
International Symposium on Network Computing and Applications, February 2002.

[4] D. A. Patterson. A simple way to estimate the cost of downtime. In Proceedings of
LISA ’02: Sixteenth Systems Administration Conference, November 2002.

[5] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-grained failover using
connection migration. In Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, March 2001.

[6] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Connection mi-
gration for service continuity over the internet. In Proceedings of the 22th IEEE
International Conference on Distributed Computing Systems, Vienna, Austria, July
2002.

[7] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. Bressoud. Engineering fault tolerant
TCP/IP services using FT-TCP. In Proceedings of IEEE Int. Conf. on Dependable
Systems and Networks, San Francisco, June 2003.

6
Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

