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wafer exposure patterns of new products in the fab (Fig. 1 is indeed
an illustrative output generated by the system).
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Building Neural Network Equipment
Models Using Model Modifier Techniques

Manish Marwah and Roop L. Mahajan

Abstract—In this paper, we address the problem of developing ac-
curate neural network equipment models economically. To this end, we
propose model modifier techniques in conjunction with physical-neural
network models. Two model modifiers—difference method and source
input method—are proposed and evaluated on a horizontal chemical
vapor deposition reactor. The results show that the source input method
outperforms the difference method. Further, to develop a model of
comparable accuracy, the source input method reduces the number of
experimental data points to approximately one fourth of those needed
without this approach.

Index Terms—Artificial neural networks, chemical vapor deposition,
modeling and simulation, semiconductor manufacturing.

I. INTRODUCTION

One of the outstanding research problems in modeling, opti-
mization, and control of complex manufacturing processes is the
development of accurate equipment models that incorporate the
underlying physics. For example, in a recent review article by Ma-
hajan [9], it was noted that while several sophisticated physics-based
computational models exist for different chemical vapor deposition
systems, most of these cannot be directly applied to manufacturing.
Many simplifying assumptions are made in developing these models
to make them analytically and computationally tractable. As a result,
although such models serve as excellent tools in describing the
general trends and in delineating the different regimes of transport,
they lack the level of accuracy that is generally needed to get
the incremental improvement sought by an equipment engineer. A
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Fig. 1. Model modifier schematic.

resort is therefore made to develop accurate empirical equipment
models. However, for multivariable, nonlinear processes, such as
those encountered in semiconductor manufacturing, extensive data
points are required to build high accuracy models. This can be quite
expensive. Thus, there is a need to develop techniques for building
equipment models that incorporate the physics, are accurate, and yet
are economical to build.

A good starting point in realizing this objective is a physical-neural
network model. The methodology to build such models is described
in a number of papers by Mahajan and co-workers ([6], [10], [11], and
[19]). It is shown in those papers that such models are almost as accu-
rate as the physical models, and they additionally have the desirable
characteristics of the speed and adaptability of neural networks. If
these physical models can now be modified, with a few experimental
points, to capture the differences between the behavior predicted by
the physical–neural network model and the actual equipment, one
can meet the objectives set forth above. In this paper, we explore
such model modifier techniques. The underlying idea is to utilize the
already existing physical–neural network model (hereafter called the
source model) for developing the equipment model (or target model)
instead of starting from scratch (see Fig. 1). Furthermore, the source
model can be an equipment model which can be used for developing
a model of another similar equipment. Recently, Namiet al. [8]
proposed a hybrid neural network approach in which they use an
approximate analytical model to build a neural network model whose
output are the undetermined parameters in the analytical model.

While there is a vast body of literature on building neural network
(NN) models and their applications, to the best of the authors’
knowledge, there is no published work on the model modifier concept.
Pratt [17] recently described a technique (which she refers to as neural
network transfer) for classification tasks such that the training time
for building the target model is reduced. However, that methodology
is neither intended nor applicable for developing NN models of
processes with continuous output values. Furthermore, the objective
there is to reduce the time taken, while in this paper our aim is to
reduce the number of data points used for training the target.

Organization of the rest of the paper is as follows. After briefly
describing physical–neural network models, two model modifier tech-
niques for building equipment models are proposed. These techniques
are then tested for a horizontal CVD reactor. Finally, implications and
future applications of this research are summarized.

II. PHYSICAL–NEURAL NETWORK MODELS

First proposed by Mahajan and Wang [11], these models are defined
as neural network models trained on first principle physical models.
To develop such a physical– neural network model (PNM), the first
principles physical model for the selected process is built. Relevant
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Fig. 2. Schematic of the two model modifiers: (a) difference method and (b) source input method.

input and output parameters are chosen and computer simulations are
obtained for combinations of input parameters dictated by a statistical
design of experiments (DOE). These numerical data are then split
into training and testing data to train a neural network according to
our methodology described in [13]. This methodology includes data
preprocessing, “simple to complex” network structure approach, and
simultaneous training and testing, where training and testing data are
identified according to a statistical DOE to capture the underlying
input–output relationship. For more details on neural networks and
other methodologies for building NN models, the readers are referred
to [1], [3], [4], [7], [15], [18], and [20].

The PNM, developed as described above, is then tested against
a set of validation points and checked for the desired accuracy. If
the target accuracy criterion is not met, the validation points are
added to the training set and the process repeated until convergence
is achieved. For an illustrated example, see [6]. This process may
involve using more data points. However, as the points are obtained
from a numerical model, they are not expensive.

III. FROM PHYSICAL–NEURAL TO EQUIPMENT MODELS

The next step in building an equipment model is to update
the physical–neural model to capture the specificities of the real
equipment. Denoting the physical–neural model as the source model
and the equipment neural model to be developed as the target model,
we propose the following two modifiers to convert the source model
to the target model.

A. Difference Method

In the difference method, a neural network model is trained on the
difference between the source and the target data. The expectation is
that if this difference is a simpler function of the inputs as compared
to the target, a smaller number of target data points might be required
to build a good NN model. In some cases, a regression model of the
difference may be good enough. The source model plus the difference
model then constitutes the equipment model. This approach is shown
schematically in Fig. 2(a).

Fig. 3. Horizontal CVD reactor.

B. Source Input Method

In this method, the output of the source model is used as an input
to the target network in addition to the inputs used for the source
model. The architecture of the target model is shown in Fig. 2(b).
Here, our rationale is as follows. Since the source model is close to
the target model, the source output is some internal representation of
the input data which would be useful to the target network. For the
degenerate case, when the underlying target function is identical to
the source function, the output of the target network should be the
same as that of the source. The learning problem is then reduced to
auto- association. Here again, the expectation is that the additional
input would make the learning task simpler for the neural network,
thereby reducing the number of target data points needed for building
the equipment model.

IV. A PPLICATION TO CHEMICAL VAPOR DEPOSITION (CVD)

Our test vehicle to test the two model modifier concepts discussed
above is a horizontal CVD-epitaxial reactor, see Fig. 3. The graphite
susceptor which serves as a support for the silicon wafers is tilted at
an angle� = 2:9

� to the horizontal. A carrier gas, typically H2, with a
small amount of silicon bearing species such as SiCl4, SiH4, SiHCl3,
or SiH2Cl2, and trace quantities of the desired dopant are passed over
the hot wafers (at� 1350 K). The silicon-bearing species diffuses
from the bulk flow to the substrate where silicon is deposited by a
chemical reaction.

For building our physical–neural network model, we used the study
of Mahajan and Wei [12] who, using a finite element formulation,
numerically solved the governing equations of transport and presented
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TABLE I
TARGET NN MODELS

Method of Model Development Training Testing Validation NN

ERel(%) ERel(%) ERel(%) Structure

1 Without using source model (from scratch) 7.6 16.39 14.62 4-4-1
2 NN model of difference 1.86 1.59 12.85 4-6-1
3 Linear regression model of difference — — 16.90 —
4 Quadratic regression model of difference — — 12.96 —
5 Source as additional input 0.3 7.16 2.58 5-4-1

results for temperature, flow, and concentration fields for both the
horizontal and the tilted surfaces. The growth rate (output)_m was
calculated as a function of various input parameters. The input
parameters are the inlet silane concentration (represented by partial
pressure) (C0), inlet velocity (U0), susceptor temperature (Th), and
downstream position (x).

Here we use 98 data points computed for a tilted susceptor
(� = 2:9�) with the following input parameter ranges:C0 from 318.5
to 957.5 Pa,U0 from 17 to 51 cm/s,Th from 1250 to 1450 K, and
x from 0.675 to 27.5 cm. For the CVD process, keeping uniform
growth alongx is more important; therefore, the data are given at 14
positions ofx, but only at three levels ofC0; U0; andTh.

A. Developing Physical–Neural (Source) Model

The source NN model was built using 98 data points obtained
from the numerical simulation [12]. Seventy-three of these data points
were used for training while 25 points were used for testing. Our NN
modeling methodology, explained in detail in [14], was used to build
the neural network model. A network with the input layer containing
four neurons, one hidden layer with five neurons, and one output
neuron (4–5–1) produced the best results. The average relative error
(ERel) for training and testing data was 1.55 and 1.65%, respectively,
where

ERel =
1

N

N

i=1

ŷi � yi

yi

2

(1)

where ŷi is the predicted output,yi is the actual output, andN is
the number of data points.

B. Equipment (Target) Data

The data for the actual process was generated from an experimen-
tally based correlation derived in [2] and is given below

_m = 7:23� 106
D0TsP0

RT 2

0
�(x)

exp �
2D0TsTm

49T 2

0
tan �

� �(0)� �(x) + 0:2 ln
�(0)

�(x)

(2)

where _m is the deposition rate in micrometers per minute,D0 is
the diffusion coefficient of silane at 300 K (0.2 cm2/s), Tm; T0; and
Ts refer to the gas temperature in the reactor, ambient temperature
(300 K), and the susceptor temperature respectively,p0 is the partial
pressure of silane at the inlet of the reactor,R is the gas constant
(8.31� 107 erg K�1) and �(x) is the boundary layer thickness at
downstream distancex and is given by

�(x) =
7

UT (x)
� 2 (3)

whereUT is the mean velocity as a function ofx:
A central composite designed experiment [16] was deployed to

identify the target data. Accordingly, 25 data points (4 corner points,
2 � 4 star points+ 1 center point) were used for both training and
testing. For validation, we used 98 points corresponding to the input

settings used for developing source model. The output for all of these
points was calculated using (2). In a practical situation, it may not
be possible to use such a large validation set. However, here we use
a large set to achieve a high degree of confidence in our results.

C. Building Equipment (Target) Model

Table I summarizes the results of the target model built using the
two model modifier techniques discussed in Section III. In all these
models, only 25 central composite data points were used for both
training and testing. Row 1 shows the errors when no help is taken
from the source model in building the target NN model. The relative
errors for both the training and the testing data are high, suggesting
the insufficiency of data points for model development. The relative
error on the 98 validation points is equally high, 14.62%, which is
even greater than the relative difference between the source and the
target models (13.84%). The clear indication is that when no use is
made of the existing source model, starting from a smaller set of
target data points results in inaccurate mapping.

Rows two, three, and four of Table I list the results with the
difference method. As mentioned in Section III-A, here the difference
between the source and the target is modeled. Three cases are
considered. In row two, the results are for a neural network trained on
the difference, while in rows three and four, the results are for a linear
and a quadratic regression model fitted to the difference, respectively.
Although the performance with the difference neural network model
is slightly better than with the quadratic model and significantly better
than with the linear regression model, the validation error is still too
large for claiming any significant advantage through the use of source
model. This is not entirely unexpected. The underlying assumption
in the difference method is that the difference output is a simpler
function of the inputs. This may not always be true, as seen in
the bottom part of Fig. 4(a), which shows a plot of the difference
deposition rate_m (target _m� source _m), as a function of downstream
distancex: Clearly, the “difference” deposition rate is as complex
a function as the source. As a result, no simplification is offered
by using the difference approach. The final model (equipment NN
model), see the top part of the figure, is thus not very accurate since
only 25 data points were used for building the difference NN model.
Our expectation is that the difference approach would work better in
situations where one of the important input parameters might have
been missed in the original source model. Then, the difference data
might reveal a simpler output–input relationship.

The best model is obtained when the source output is used as
an additional input to the target model, see row five. TheERel for
validation data in this case is 2.58% which is comparable to that of
the source model (1.6%). The progression of training for this method
is shown in Fig. 4(b). Here the curves are plotted at 500, 1000, 5000,
and 13 000 (final model) epochs. The error on the 98 validation points
continually decreases with training. Further, from the plot of the_m
versusx, we see that after only 500 epochs, the curve looks similar
to the final model. Table II lists theERel versus epochs.

Finally, Fig. 5 provides a composite view of the performance of the
two model modifier approaches. The deposition rate is plotted versus
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(a)

(b)

Fig. 4. Deposition curves for the source model, the target data, and the NN
equipment model using (a) the difference method and (b) the source input
method. In case of the source input method, the equipment NN model is
shown at different stages of training.

TABLE II
DYNAMICS OF TRAINING OF THE SOURCE INPUT METHOD

Epochs ERel

500 13%
1000 4%
5000 3%
13 000 2.4%

downstream distancex: The other inputs are at the central values
(U = 34 cm/s,C = 639 Pa, andT = 1350 K). The reader should
keep in mind that a five-dimensional plot would be required to truly
represent the input–output relation. However, the two-dimensional
plots are representative of the overall performance. As discussed
above, the source input method clearly outperforms the other two
techniques.

V. CONCLUDING REMARKS

Developing accurate equipment models for complex semiconductor
manufacturing processes is generally a difficult and expensive task.
In this paper, we have presented an economical way of developing
an equipment neural network model that combines a physical–neural
network model (trained and tested using data from analytical or
numerical simulations) with a model modifier technique. Two dif-
ferent model modifier techniques, namely the difference method and

Fig. 5. Comparison of the equipment NN models developed using the source
input method and the difference method.

the source input method, were proposed and tested on a chemical
vapor deposition horizontal reactor. Both the methods are simple to
implement. However, of the two methods, the source input method
provided us the better accuracy for the example considered here.

Although in this paper we presented model modifier techniques
for economical building of equipment models from physical neural
network models, it is noted that the technique is equally applicable
for transferring an experimental-data-based neural network model
from one equipment to another similar equipment. A common ex-
perience in manufacturing is that even though two machines may
be from the same equipment vendor, they may not be identical in
their performance. Each machine has its own unique “personality,”
and this thwarts the task of using a universal recipe for all the
machines. The methodology proposed here can be utilized to develop
unique equipment models for all the machines with relatively few
experimental points. We also note that the same approach can be
used to transfer models from one to another similar design.
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Spurious Source/Drain Underlap
of Large Junction Area NFET’s

Terence B. Hook

Abstract—When a 0.35-�m CMOS technology was introduced into
manufacturing, a small fraction of the tested devices exhibited symptoms
of source/drain underlap, despite the fact that all other monitors were
well within the design control limits. Additional measurements showed
variable overlap on various monitor structures on the same chip. The
specific formulation of an HF wet clean was shown to be responsible for
the underlapped devices, and the problem was eliminated by altering this
process step. High-volume manufacturing data are presented to show the
problem and the solution.

Index Terms—Semiconductor device manufacture, semiconductor de-
vice reliability, semiconductor logic devices.

I. INTRODUCTION

The technology in question is a 3.3-V, 0.35-�m CMOS logic
technology utilizing nitrided gate oxide [1], [2]. As part of the basic
device design, the minimum allowable overlap of the gate polysilicon
to the source and the drain was carefully established by examining
the NFET hot-electron shift as a function of overlap capacitance.
Provided that the overlap capacitance exceeds a specific minimum
value, the hot-electron behavior was well controlled, exhibiting the
typical dependence on the substrate current and stress time [3]. Upon
introducing the technology into manufacturing and obtaining data on
a very large sample, however, a few devices were observed to violate
these relationships and demonstrated electrical behavior consistent
with insufficient overlap, although adjacent chips and devices on the
same wafer behaved normally and the overlap monitors showed no
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Fig. 1. NFET drain current degradation after hot-electron stress normalized
for substrate current plotted against gate-source overlap capacitance. Each
point is a single chip.

change in capacitance. Extensive characterization of various devices
on the same chips showed that only a certain topography was
affected; in particular, devices with large regions of open diffused
areas were underlapped, while otherwise similar devices with small
diffused areas behaved normally. Process experiments established that
optimizing a wet clean step eliminated this phenomenon.

II. DETERMINATION OF THE MINIMAL ALLOWED CAPACITANCE

For improved performance, it is desirable to minimize the overlap
capacitance while maintaining adequate reliability. To determine the
optimum design point, experimental wafers with different overlap
capacitance were produced by modifying the spacer thickness. To
assess the reliability of the devices, a large drain bias was applied for
a short time, and the drain current before the stress was compared
to that measured after the stress. The NFET hot-electron shift thus
determined was then normalized to the measured substrate current and
is plotted against the overlap capacitance (as measured on a capacitive
monitor) in Fig. 1. The data indicate that if the overlap capacitance is
less than 0.29 fF/�m, the hot-electron shift is anomalously large. This
is a typical symptom of a phenomenon known as “prompt shift” [4],
[5] and is indicative of too little doping in the source/drain regions
beneath the gate and will also manifest itself in an increase in the
resistance of the FET. Another aspect of inadequate overlap manifests
itself in an apparent anomalously long effective channel length. Fig. 2
shows the effective channel length of NFET devices as a function of
the overlap capacitance. There is a change in slope when the overlap
capacitance drops below 0.29 fF/�m; at that point the effective chan-
nel length increases anomalously, rapidly exceeding the physical line
width. The effective channel length is extracted from a set of devices
of varying length [6] and relies on good scaling behavior across
the device lengths for a physically realistic value. If the devices are
substantially underlapped, then the current on the shortest devices will
be unusually reduced relative to the longer devices, and the effective
channel length will appear to be very long. For well-behaved device
characteristics, it is necessary to avoid an underlapped condition.

III. M ANUFACTURING DATA

Having established the process variables (e.g., spacer width,
source/drain drive heat cycle, etc.) so that the overlap would never
be less than this critical value, and having run wafers in substantial
volume, we noted that a small fraction of the scribe line devices
showed exceedingly long extracted electrical effective channel length,
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