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ABSTRACT 
 

 In recent years, climate change, depletion of conventional 
energy sources and rising energy costs have led to an increased 
focus on sustainability. Within the Information Technology (IT) 
sector, data centers are significant energy consumers. The first 
steps towards reducing power consumption in data centers are 
to monitor it and to determine the heavy hitters.  
 
 Unfortunately, fine-grain power information is often not 
readily available within data center environments. In this paper, 
we conduct an exploratory analysis of aggregate power data in 
a data center. We collect data from the power infrastructure of a 
data center in Palo Alto, CA, as well as from a data center in 
Bangalore, India. We examine the data in increasing detail, and 
reveal the opportunities and challenges for disaggregating data 
center power consumption data. 
 

 
INTRODUCTION 

 In recent years, the demand for data centers has seen 
tremendous growth. Many of the largest data centers in the US 
are experiencing a growth at 20% per year and over 40% of 
enterprises are refurbishing or building new data centers to 
support ongoing business operations and anticipated future 
demand (Greiner2008). Energy consumption of data centers is 
a growing concern. The Environmental Protection Agency 
(EPA) calculated that in 2006, 61 billion kilowatt-hour (kWh) 
of electricity costing $4.5 billion was consumed by data centers 
in the US. This amount accounts for 1.5% of the total US 
electricity consumption (USEPA2007). Of this, the cooling 

infrastructure could be responsible for up to 50% 
(Belady2007). It is estimated that data center power 
consumption will increase 4% to 8% annually and is expected 
to reach 100 billion kWh by 2011 (ClimateGroup2008). 

 
This paper makes two primary contributions. First, it 

characterizes power use in two actual data centers. Second, it 
explores the opportunities and challenges in disaggregating 
power usage data in a data center environment. These are 
important initial steps towards improving the energy efficiency 
of data centers. 

 
The remainder of the paper is organized as follows. The 

next section provides background information on general 
trends in electricity consumption, and a brief introduction to 
data centers. The Related Work section focuses on previous 
efforts to disaggregate power usage in residential and 
commercial settings. The paper then describes the data sets and 
provides characterization results. Next, the “Nonintrusive 
Application Load Monitoring” technique is described, followed 
by the results of its application to power use in two data 
centers. A discussion of the opportunities and challenges for 
disaggregating data center power use and a summary of our 
work concludes the paper. 

 
BACKGROUND 

 
This section provides background information on two 

topics. First, general trends (i.e., data center-agnostic) in 
electricity demand are examined. Second, a brief introduction 
to data centers is provided. 
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Electrical Usage Patterns 
 

Figure 1 shows the estimated electricity demand in California 
for the week February 7-13, 2010. The demand can 
conceptually be broken into two parts: the base load and the 
variable load. The base load represents the minimum demand 
that must be supplied at all times; for this week, the base load 
was about 16.8 GW. The remainder of the demand is 
considered the variable load. Figure 1 shows several common 
patterns. First, there is a distinct time of day pattern, with 
demand lowest during the early morning hours, a sustained 
surge in demand during typical work hours (e.g., 9am-5pm), 
and the peak demand (up to 30.5 GW during the observed 
week) in the evening. This daily behavior is clearly influenced 
by human activities, such as sleeping, working, and food 
preparation. A second pattern occurs across the days of the 
week. In particular, weekdays have higher average and peak 
demands than do weekend days. Weather can also affect the 
demand for electricity (Dryar1944). 
 
  
 
 
 
 
 
 
 
 
 
 
 

Data Centers 
 
Data centers are controlled environments for operating IT 
equipment such as servers, storage, and networking 
components. Data centers have three primary types of 
infrastructure: the IT infrastructure, the cooling infrastructure, 
and the power infrastructure. A conceptual view of these 
infrastructures is shown in Figure 2. The IT equipment is 
typically installed in industry standard racks, which are then 
configured in rows. The rows are aligned to form either “hot 
aisles” or “cold aisles”. The cold aisles include perforated floor 
tiles which allow cool air from the floor plenum to flow to the 
inlets on the IT equipment. The figure shows a photo of an 
exemplary cold aisle. The cool air then flows through the IT 
equipment, and removes the heat from the operating electronic 
components. This air is then exhausted into a hot aisle. The 
warm air circulates (e.g., via a ceiling plenum) to Computer 
Room Air Conditioning (CRAC) units located in the data 
center. The cooling infrastructure typically consists of one or 
more CRACs, the chillers which generate chilled water for use 
by the CRACs, and a cooling tower which exhausts heat from 
the water returned from the CRACs. The power infrastructure 
connects to either the utility grid or to an onsite source of 

electricity generation. From here the power feeds into 
switching gear, which directs the power to either the IT 
infrastructure or the cooling infrastructure. The power 
infrastructure typically includes an Uninterruptible Power 
Supply (UPS) to enable the IT equipment to continue operating 
during any short term disruptions to the grid or on-site power 
generation or transmission. Lastly, Power Distribution Units 
(PDUs) are used to distribute the power to the individual IT 
components. Note that power to the cooling infrastructure does 
not need to go through a UPS and PDU. 
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Figure 1. California Electrical Demand, Feb. 7-13, 2010. 
(Data from http://oasis.caiso.com/mrtu-oasis/) 

Figure 2. Data center power, cooling and IT infrastructures. 
 

RELATED WORK 
 
Prior work on disaggregating power consumption data has 

focused primarily on residential use. The seminal work on 
disaggregating electricity consumption data was conducted by 
George Hart two decades ago (Hart1992). Hart introduced the 
“Nonintrusive Application Load Monitoring” (NALM) 
technique to simplify the collection of device-specific energy 
consumption data in residential settings. NALM analyzes 
current and voltage waveforms of the aggregate residential 
electrical load for signatures of different devices. The 
information can be used for numerous purposes, such as 
assisting with energy conservation efforts or identifying failing 
devices. 
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While NALM has numerous beneficial qualities, it also has 
limitations. Three main limitations are: it does not work well 
for identifying “small” appliances (i.e., those that consume < 
100W), for devices that use a continuously varying amount of 
electricity, or for distinguishing between similar devices. A 
number of subsequent researchers have investigated solutions 
to these limitations. For example, Laughman et al. looked at 
using higher harmonics to distinguish between loads with 
overlapping signatures (Laughman2003). Farinaccio and 
Zmeureanu use a rule-based pattern recognition technique to 
disaggregate the total electrical load in a home into the major 
end uses (Farinaccio1999). Prudenzi recommends a neural net 
approach to identify the domestic applications in a residential 
electrical load (Prudenzi2002). Matthews et al. provide a more 
detailed explanation of these and other recent works on 
disaggregating residential electrical loads. 

In a more recent study, Patel et al. examined how to detect 
a variety of electrical events throughout a home using a single 
plug-in device (Patel2007). They monitor the broadband 
electrical noise (both transient and continuous) that is generated 
by abruptly switched mechanical or solid-state devices. This is 
then used to construct “features” or inputs that can be used to 
train a classifier such as a support vector machine. The authors 
claim that the technique may be able to distinguish events 
among a dense collection of devices that have similar switching 
and load characteristics. However, they have not yet 
demonstrated this. 

Norford and Leeb were the first to apply NALM (which 
they renamed “NILM”, or “Non Intrusive Load Monitoring”) 
to a commercial setting (Norford1996). They indicate that 
disaggregating a commercial electrical load is more difficult 
than for a residential load, as many large electrical devices in 
commercial settings have more complex consumption patterns. 
Their work considers how to address this challenge for space-
conditioning equipment of an office building. 
 
DATA COLLECTION 

 
We examine power consumption information from two 

data centers. Our initial analyses use data from the HP Labs 
data center in Palo Alto, CA. For this data center, we have two 
types of data: (1) power consumption of the IT equipment in 
the data center, recorded at four PDUs; and (2) power 
consumption of the chiller that provides chilled water to the 
CRAC units in the data center as well as to three buildings on 
the HP Labs campus. The Palo Alto data we use is for the 
period October 1st, 2009 until May 31st, 2010. Three of the 
PDUs recorded consumption every 20 seconds, while the 
fourth PDU and the chiller recorded consumption every 30 
seconds. 

We also have power consumption data of chillers units and 
pumps from an HP data center in Bangalore, India. The cooling 
infrastructure there contains three air-cooled and two water-
cooled chillers. However, the chillers are not individually 
instrumented with power meters. Instead, power meters are 

installed at subpanels in the data center serving one or more 
chillers and pumps. Here, we look at data from one such 
metering point that measures aggregate power consumption of 
an air-cooled chiller and three pumps. Data is available at about 
one minute intervals for about 14 days from October 2009. 
 
EXPLORATORY ANALYSIS 
 

 
Figure 3. Power consumption of IT equipment in Palo Alto 
data center, Oct. 2009 - May 2010. 
 
Each piece of IT equipment in the Palo Alto data center is 
connected to one of four Power Distribution Units (PDUs). 
Each PDU records the aggregate power consumption of the 
devices connected to it. The initial question we consider is what 
macro-level information we can determine from these four 
aggregated measures. 
  
Figure 3 shows the power consumption of the IT equipment in 
Palo Alto. An important observation is that the consumption is 
quite constant, with the exception of a few key events. For 
example, in mid-October 2009, a scheduled shutdown of some 
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IT equipment occurred, to facilitate maintenance work on the 
cooling infrastructure. In mid-February 2010, an unscheduled 
shutdown occurred when an hours-long, city-wide power 
outage occurred. Lastly, in mid-April 2010 the demand on PDU 
4 increased noticeably, as new IT equipment was added to an 
area of the data center supported by this particular PDU. 
 

 
Figure 4. Power consumption for week of Feb. 14-21, 2010. 
 
Figure 4 provides a closer look at the power consumption of 
the data center during the week of February 14, 2010. For the 
first three days of the week, the demand was relatively constant 
on each PDU. The demand is roughly equal across PDUs 1, 2 
and 3, and slightly lower on PDU 4. This occurs because IT 
equipment is statically assigned to a specific PDU. On 
Wednesday, February 17th, 2010, a plane crash in Palo Alto 
created a city-wide power outage (Perry2010). The outage 
started around 8am; once the backup power in the data center’s 
UPSs was exhausted, the IT equipment abruptly shut off (in 
some cases preceded by a momentary surge in demand). A few 
hours later, power was restored in Palo Alto, and the data center 
equipment started to come back online. However, an equipment 

failure in the data center’s power infrastructure took the data 
center offline again. The data center was partially operational 
within a day of this failure, and fully operational within two 
days. 
 

 
Figure 5. Examining the chiller power consumption. 
 

For economic efficiency, the HP Labs campus uses a 
chiller to provide chilled water to both the data center and 
several buildings. Figure 5 shows the power consumption of 
the chiller for the week of Feb. 7th-13th. The top graph in Figure 
5 reveals the chiller’s power consumption (“demand”) is quite 
variable, with the peak demand more than double the minimum 
demand (base load). This is quite different from the IT 
equipment’s consumption (bottom graph), which only varied 
about 20 KW from a base load of 320 KW. As the IT demand is 
quite constant, we expect that it primarily contributes to the 
base load of the chiller. The variable load of the chiller is 
largely influenced by the external ambient temperature, as can 
be seen by comparing the top and middle graphs of Figure 5.1 

Although the aggregated IT demand is relatively stable, the 
bottom graph of Figure 5 does reveal three noticeable (and 
similar) events occurred that week. For example, during the 
night of Tuesday, February 9th, there was a sudden increase of 
approximately 10 KW in the demand. This increase was 
sustained until the following evening. Similar events can be 
                                                           

1 This graph uses weather data from http://www.wunderground.com/, for 
weather station KCAPALOA9 – Barron Park, Palo Alto, CA. 
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seen from Thursday night through Friday evening, and from 
Friday night until Saturday evening. In the next section we 
investigate such events systematically rather than visually. 

 
PROBLEM DESCRIPTION AND TECHNIQUES USED 

 
While our visual exploration of the data can provide 

information on macro-level events, to understand the micro-
level events a more in-depth examination of the data is 
necessary. In particular, we consider the “Nonintrustive 
Application Load Monitoring” or NALM technique 
(Hart1992). This technique has been shown to work reasonably 
well in both residential and commercial environments. A 
desirable feature of NALM is that it can extract component-
level behaviors from aggregated power data. Like any 
technique though, it has its limitations. We discuss these more 
in the Challenges section. 

 
NALM has five basic steps (Hart1992): 
 Power measurement 
 Detection of on-off events 
 Clustering of similar events 
 Matching of on/off events over time 
 Equipment identification 
 
For this paper, we are using power measurements from the 

sources described earlier. Simple “ON/OFF” events can be 
identified by calculating the change in consumption from one 
measurement interval to the next. Increases in consumption 
indicate that one or more components were turned on during 
the past measurement interval, while decreases in consumption 
indicate that one or more devices were turned off. However, in 
many instances an increase and decrease occurs over several 
data points. To address these cases, we look for a “run length” 
of increases (or decreases) and then sum them up to extract 
rising (or falling) edges.  

All the edges thus detected are then partitioned into groups 
using clustering [13], which is a generic technique used to 
partition a set of elements into groups (clusters) such that 
elements within a cluster are more similar than those across 
clusters. We used a simple algorithm for clustering called k-
means which divides a data set into k clusters. The algorithm 
requires the number of clusters, k, and the data as input, and 
aims to minimize the variance within each cluster. It assumes 
an initial set of “centers” for the k clusters and then 
alternatively performs the following two steps.  

 
1. For each center i, it identifies the set of points that are 

closest to it as compared to other centers. All of these 
points belong to cluster i. Typically, Euclidean distance is 
used to determine the closeness of two data points. 

2. It computes the new center of each cluster by averaging all 
the points belonging to that cluster. 

 

These two steps are repeated until convergence is reached; that 
is, when the centers of the clusters no longer change. Typically, 
the initial centers are randomly chosen from among the data 
points. Multiple restarts of the algorithm are performed and the 
best result, that is, the one with minimum total intra-cluster 
variance, is chosen. 

Since the edges detected are assumed to correspond to 
ON/OFF events and noise, an odd number of clusters (k) is 
chosen with one cluster corresponding to noise and an equal 
number corresponding to ON and OFF events. The result of 
clustering is visually inspected to determine the noise cluster 
(which typically has the most number of points and a center 
very close to zero), and matching ON/OFF events. With some 
domain knowledge, it may be possible to associate these events 
with distinct pieces of equipment and then their power 
consumption can be monitored over time, without the need to 
install a meter at that component. However, there are several 
situations where it is challenging to uniquely disaggregate the 
data as discussed in a later section. 

 
EXPERIMENTAL RESULTS 

 
To demonstrate the effectiveness of the disaggregation 

techniques described in the previous section, we apply it to two 
sets of data: 1) Cooling infrastructure data collected from a 
subpanel at the Bangalore data center; and, 2) IT power data 
collected from a PDU of the Palo Alto data center. 

Bangalore Data 
The top graph in Figure 6 shows the raw power 

consumption data for 14 days. As described earlier, this data 
corresponds to the aggregate power consumption of an air-
cooled chiller and three pumps. Figure 6 reveals that there is 
much more variation here than in the IT power consumption 
data. The abrupt changes of several hundred KW are due to the 
air-cooled chiller being turned on or off. The more gradual 
changes in demand over the course of a day are likely due to 
the external ambient temperature in Bangalore, shown in the 
bottom graph of Figure 6. A more detailed view of the time 
series is shown in Figure 7, where each plot shows one entire 
day beginning at midnight. Both large and small variations in 
power consumption can be seen. To disaggregate the data, we 
apply the aforementioned techniques. 

In all, there are 19,450 data points in the 14 day time 
series. The rising and falling edges are detected and k-means is 
applied to cluster the edges. A plot of the edges is shown in 
Figure 8 with the positive values indicating rising edges, and 
negative falling edges. In addition to the noise cluster 
(described later), two types of clusters are discovered: ON 
clusters that contain positive points and correspond to rising 
edges; and OFF clusters that contain negative points and 
correspond to falling edges. A number of values for k (number 
of clusters) were tried during clustering: 3, 5, 7, 9 and 11. In 
each of these, the cluster corresponding to noise stood out and 
was easily identified. Its mean was always approximately zero 
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and had an order of magnitude more points (between 16,000 to 
18,000 points for the above k values) than other clusters. To 
determine the best k, we matched the ON and OFF clusters in 
each case. A close match (both in terms of cluster center 
magnitudes and their sizes) indicates that those clusters likely 
correspond to ON/OFF events of the same devices (or set of 
devices).  In our case, k=5 provided a good match as can be 
seen in Table 1, which describes the properties of all the five 
clusters. The table lists the number of points in each of the 
clusters, the cluster centers, standard deviation, and the 
minimum and maximum elements in the cluster. These clusters 
are also marked by different symbols in Figure 8. More 
information regarding the distribution of points within each 
cluster is provided in Figure 9 through box and whisker plots of 
each cluster.  A box and whisker plot is a convenient way to 
summarize sample data. The bottom and top of the box are the 
25th and 75th percentiles, respectively, while the band near the 
middle of the box is the median. The minimum and maximum 
values are shown at the ends of the “whiskers”. Points 
considered outliers are plotted separately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Detailed view of the power time series in 
Figure 6 over a three day period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Power time series for cooling infrastructure 
subpanel of Bangalore data center. 

 
 
 

Figure 8. Edges detected from the power time series. 
The symbol (or color) of the point indicates the 
cluster it belongs to.  
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Table 1. Details of the five clusters. 

 
 

Looking at Figure 9, cluster 4 is the noise cluster, as it is 
tightly clustered around 0. Clusters 1 and 2 are OFF clusters; 
while 3 and 5 are ON clusters. OFF cluster 1 and ON cluster 5 
match particularly well – the number of points are identical and 
the magnitude of the means differ by less than 5%. Given the 
large magnitude of the edges in these clusters, these likely 
correspond to the turning ON/OFF of the air cooled chiller. The 
variation within these clusters exists since the chiller is not a 
single state device. That is, it can consume different amounts of 
power depending on its operational mode. In the case of a 
chiller, different utilization levels correspond to different levels 
of power consumption. Furthermore, in some cases one or 
more pumps can also be turning on/off about the same time as 
the chiller. In this respect, we are limited by the one minute 
granularity of the samples.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The remaining two clusters, ON cluster 3 and OFF 
cluster 2, also match closely. While the number of points is 
slightly different, the magnitude of the means is almost 
identical. However, relating these clusters to devices is more 
challenging in this case. These clusters correspond to one or 
more pumps turning ON/OFF. Note that the variance within 
these two clusters is higher (as a percentage of the mean) 

compared to the chiller clusters. A higher sampling rate would 
simplify the disaggregation problem by separating the pump 
ON/OFF events. Further, additional domain information – such 
as the type and power rating of these pumps, their operating 
schedule, how correlated is their operation with each other or 
the chiller, etc. – would help in disaggregating the pump power 
usage.  
 

Palo Alto Data 
 
When the above analysis is repeated on PDU 1 data from 

the Palo Alto data center (see Figure 3), it does not yield any 
useful results. Due to the static nature of the electrical load, 
there are no edges detected that correspond to ON/OFF events 
(other than a few related to the failure event). Figure 10 shows 
the data for PDU 1 for the month of February 2010. The large 
variation corresponds to the failure event described earlier, but 
other than that the power usage is relatively constant. The 
edges obtained are mainly noise events and subsequent 
clustering only results in forming noise clusters. Tables 2 and 3 
provide details of the application of k-means with k set to 3 and 
5.  In Table 2, cluster 1 consists of small negative values and 
zeros, while cluster 2 contains small positive values. Cluster 3 
can be ignored since it contains only one data point, which 
corresponds to the failure event. With five clusters, two 
(clusters 1 and 2) are spurious containing very few points, 
while clusters 3, 4 and 5 contain negative noise, positive noise 
and zeros, respectively. 

 
Table 2 Clustering of PDU data with k = 3 

 
 

Table 3 Clustering of PDU data with k = 5 

 

CHALLENGES AND OPPORTUNITIES 
Our preliminary exploration indicates that power 

consumption data in data center environments contains a 

Cluster 
ID 

Number 
of points 

Mean 
(KW) 

SD 
(KW) 

Min 
(KW)  

Max 
(KW) 

1 16 -312.9 56.8 -428.0 -236.8 
2 744 -14.7 9.1 -100.4 -8.2 
3 717 15.0 11.7 8.2 106.5 
4 17,957 -0.004 1.6 -7.2 6.1 
5 16 327.2 49.6 237.6 409.6 

Figure 9. Box and whisker plots of the five 
clusters. 

Cluster ID Number 
of points 

Mean 
(KW) 

SD 
(KW) 

Min 
(KW)  

Max 
(KW) 

1 104,853 -0.11 0.36 -41 0 
2 11,584 1.04 0.89 1 81 
3 1 -105 NA -105 -105 

Cluster ID Number 
of points 

Mean 
(KW) 

SD 
(KW) 

Min 
(KW)  

Max 
(KW) 

1 2 58 32.5 35 81 
2 1 -105 NA -105 -105 
3 11,574 -1.03 0.47 -41 -1 
4 11,582 1.03 0.37 1 26 
5 93,279 0 0 0 0 
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wealth of interesting and potentially useful information. 
However, there are challenges in extracting such information. 
While the general issues are known limitations of NALM 
(Hart1992), we re-state them here as they apply in the data 
center content. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of devices. Data centers have many devices that 

consume power. For example, there could be thousands or tens 
of thousands of pieces of IT equipment in a data center. Even if 
sub-metering is used (e.g., at the PDU level rather than the data 
center level), there could still be dozens or hundreds of unique 
devices to identify and monitor. One practical issue is to collect 
the power consumption data at short durations, so that more 
distinct on-off events can be detected.  

 Number of ON/OFF events. In many data center 
environments, the IT, cooling and power infrastructures all 
operate on a 24/7 basis. As a result, there are relatively few 
ON/OFF events. This means it can be difficult to bootstrap the 
analysis process, if the data center is already in operation. 
Scheduled or unscheduled downtimes offer an opportunity to 
observe ON/OFF events, although short measurement durations 
will be needed to distinguish between these events. 

There are several reasons why ON/OFF events could 
become more or less scarce in the future. For example, more 
ON/OFF events could occur if dynamic provisioning of VMs 
becomes more prevalent (Kusic2009, Chen2010). Changes in 
such an environment could occur for durations of tens of 
seconds (the time scale of controller decisions). Similarly, 
ON/OFF events could also increase if individual servers turned 
ON/OFF more quickly to eliminate electricity consumption 
during idle periods (Meisner2009). These could occur over 
very short time scales (< 1 second), which would affect 
granularity of the power consumption measurements needed.  

However, if “energy-proportional computing” becomes a 
reality (Barroso2007), energy savings could occur without 
turning servers off. In this scenario, ON/OFF event would 
remain scarce, and identifying the sources of changed 
electricity consumption would still be problematic. Similarly, 
cooling infrastructure components such as chillers – although 
not completely energy proportional – can run at varying 
utilization levels consuming varying amount of power.   

Complexity of device signatures. NALM works best for 
devices that have simple power consumption signatures (e.g., 
“ON” state consumes N watts, “OFF” state consumes 0 watts). 
However, this may not be the case for many devices in data 
centers. For example, many modern servers offer CPU 
frequency or voltage scaling to reduce energy consumption. 
There are many factors that could influence the choice of 
frequency/voltage over time.  

Data quality. NALM is at the mercy of the power 
consumption data. If data is missing or recorded values are 
incorrect, the quality of NALM’s results will be affected. 

Competing technologies. An advantage of NALM is that it 
does not require pervasive instrumentation to be put in place. 
However, in data center environments some of this can happen 
in an automated manner. For example, some modern servers 
(e.g., HP ProLiant G6 servers) are now manufactured with 
embedded power meters. However, this does not negate the 
potential usefulness of disaggregation techniques. For example, 
NALM could be used to help identify the devices that 
contribute the “unknown” power consumption in the data 
center, once the consumption of the instrumented devices is 
subtracted from the aggregate load. 

Figure 10. PDU 1 data for the month of February 
2010 from the Palo Alto data center. 

CONCLUSIONS AND FUTURE WORK 
 
In this paper we provided an exploratory analysis of 

aggregate power metrics in data centers. We showed that power 
consumption data contains a wealth of information. We 
revealed macro-level information by visualizing the data. We 
then explored micro-level details by applying NALM on 
empirical data sets. Lastly, we described the challenges and 
opportunities that exist for using NALM in a data center. 

There are numerous opportunities for future work on this 
topic. One is to collect or otherwise obtain finer-grained power 
consumption measurements from a data center, and explore 
how well it can identify components like servers, for example 
during scheduled or unscheduled power cycle events. Other 
disaggregation techniques could also be explored. For example, 
Patel et al. indicate noise signatures may disambiguate devices 
that turn on at the same time (Patel2007). Such techniques may 
require additional metrics to be collected, to distinguish 
between numerous identically configured devices (e.g., 
servers). 
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