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ABSTRACT
Improving the cooling efficiency of servers has become an

essential requirement in data centers today as the power used to
cool the servers has become an increasingly large component of
the total power consumption. Additionally, fan speed control has
emerged in recent years as a critical part of system thermal ar-
chitecture. However, the state of the art in server fan control of-
ten results in over provisioning of air flow that leads to high fan
power consumption. It can be exacerbated in server architectures
that share cooling resources among server components, where
single hot spot can often drive the operation of a multiplicity of
fans. To address this problem, this paper presents a novel multi-
input multi-output (MIMO) fan controller that utilizes thermal
models developed from first-principles to manipulate the opera-
tion of fans. The controller tunes the speeds of individual fans
proactively based on prediction of the sever temperatures. Ex-
perimental results show that, with fans controlled by the optimal
controller, over-provisioning of cooling air is eliminated, temper-
atures are more tightly controlled and fan energy consumption is
reduced by up to 20% compared to that with a zone-based feed-
back controller.

1 INTRODUCTION
Power consumption is a critical issue in the design and op-

eration of enterprise servers and data centers today. For 2006,

the Environmental Protection Agency (EPA) reported that 60 bil-
lion kWh, or 1.5% of the total U.S.A. electricity consumption,
was used to power data centers [1]. This is expected to rise to
100 billion kWh by 2012. In response to this problem, there
have been many studies on server and cluster power manage-
ment. However, server power is only one component of the total
power consumed by a data center. The other significant compo-
nent is power consumed by cooling equipment (e.g., fans, com-
puter room air conditioners). Several studies [2, 3] have shown
that every 1W of power used to operate a server often requires an
additional 0.5-1W of power, needed by the cooling equipment,
to extract the heat at the data center level. The same trends are
applicable at the individual server level. In particular, with in-
creasingly dense compute infrastructures, such as blade servers,
and more powerful processors, the server fans can often consume
a significant amount of power. Peak power usage by fans in cer-
tain blade servers can be as high as 2000W, comprising 23% of
the typical system power. While a few studies have examined
cooling power, they have mainly examined data center level is-
sues [4, 5, 6, 7, 3], the state of the art in server fan control often
results in over-provisioning of air flow that can lead to increased
energy consumption.

In recent years, there has been a rapid growth in the use of
blade servers in data centers [8]. Commercially available blade
systems include HP C-Class blades, IBM BladeCenter, and Dell
PowerEdge blade servers. A survey of 166 data center opera-
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Figure 1. Enclosure Design

tors [9] showed that 76% of operators were using blade servers
within their data centers, with a further 14% having plans to de-
ploy them in the near future. Figure 1 illustrates an example of
a typical blade enclosure. It has a total of sixteen blades in the
front, eight on the top and eight on the bottom. The blades are
cooled by up to ten fans in the back, five on the top and five on
the bottom. The airflow generated by the fans is pulled through
the blades towards the back of the enclosure with each fan con-
tributing to the blade-level airflow rate. The enclosure and server
architecture allows sharing of the cooling resources among the
blades, and provide improved flexibility and configurability of IT
resources. However, control of the fans in most cases are heuris-
tic and zone based. Without an optimal fan control design, the
over-provisioning of cooling capacity can be exacerbated in this
architecture since a single hot spot can often drive the operation
of a multiplicity of fans.

To address the thermal management of servers, this paper
presents a model-based approach to managing fan power that is
able to provide optimal cooling energy efficiency. We believe
this is the first work to study such a model-based approach to fan
control within servers. We make two main contributions in this
paper.

First, we show how concepts from heat transfer theory can
be combined with control system techniques to create accurate
models for the cooling system in blade environment. Complex
interaction exists within the blade environment among multiple
variables including the power consumption and speeds of the
fans, and the temperatures of the servers. Heat transfer theory
allowed us to build models that can determine the individual and
collective impact of adjusting fan speeds and varying workload
on a server’s temperature. The parameters were derived and the
models were validated through experiments with only the sensors
and knobs immediately available inside the blade servers that are
very limited.

Second, we present an optimal fan speed controller based on
the models, evaluated in a prototype system. Using the power
and temperature models, we create a multiple-input multiple-

output (MIMO) fan controller that can be built based on a power
optimization problem that is tractable and allows for an online
solution. The benefits of the models and controller were quan-
tified through a real prototype that works with commercial, off-
the-shelf hardware. We measure both power savings and impact
on thermal performance with workloads gathered from real data
centers. The results show that, without impacting temperature
thresholds, our optimal controller can reduce cooling power by
20% compared to a zone-based integral feedback controller.

This paper is organized as follows. In the next section, we
define the fan control as an optimization problem. The models
needed to solve the optimization problem online are presented
in Section 3. In Section 4, we discuss the implementation of
the optimal controller that can solve the optimization problem in
real time. Experimental evaluation and results are described in
Section 5 before we conclude the paper in Section 6.

2 Problem Definition
Our goal of cooling management for blade servers is to min-

imize the total energy consumption by the fans of the enclo-
sure while maintaining critical temperatures below their defined
thresholds. Assume that the enclosure has I fans and J blades,
then our goal is to

min
FS

∑
i

PFi , (1)

where PFi is the power consumed by fan i (i = 1, . . . , I), and FS is
the vector of all the fan speeds. For proper thermal management,
the temperature of each blade, Tj, should be maintained below
Tre f , a reference threshold specified by the manufacturer:

Tj ≤ Tre f , for any blade j. (2)

The cost function in Eqn. (1) and the constraints defined by
(2) formulate a well-defined optimization problem. The time-
varying and sometimes unpredictable nature of application de-
mands require that the optimization problem be solved at run-
time. Measurements for temperatures and actuators for fan speed
tuning are available in most blade enclosures for real-time con-
trol. However, to solve the optimization problem, the controller
needs models to determine the impact of actuator changes on
the objective function and the constraints. For example, mod-
els are required to correlate fan speeds with both fan power and
blade temperatures. Before we discuss how to design the con-
troller that can solve the optimization problem in real time, we
first present in the next section the models that can represent the
complicated correlations between the actuators and sensors, and
show how the model parameters can be identified through exper-
iments using the sensors available in the servers.
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Figure 2. Blade Power Model
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Figure 3. Fan Power Model

3 Models
Both power and temperature models are needed to solve the

fan control problem. We first present in Section 3.1 the models
that represent power consumption of servers and fans. The power
of the servers needs to be modeled because it directly impacts
server temperatures. Temperatures are significantly more chal-
lenging to model empirically than power. They are affected by
multiple parameters including server workload, server inlet tem-
perature, and component thermal properties. While a number of
per-blade sensors, including memory and motherboard tempera-
ture, were available to determine a blade’s internal temperature,
we discovered, after performing sensitivity analysis, that TCPU j of
the blade j, the processor temperature, was dominant. We there-
fore use TCPU j as a proxy for Tj, the temperature of the blade.
The temperature models are described in Section 3.2 for both
steady and transient states. Finally, we describe how to identify
the model parameters through experiments and provide examples
for validation of the models in Section 3.3.

3.1 Power Models
3.1.1 Blade power consumption
Although our goal is to minimize fan power, models for

server power consumption are also required. Power consumed by
the processors is a critical component of the thermal models that
are to be derived, which is closely related with the power mod-
els of the blades. We therefore created a blade power model that
characterizes the relationship between processor capacity utiliza-
tion and blade power consumption. Our model is based on the
fact that the power consumed by the processors is usually the
dominant and most variable component of the server power [10].

Figure 2 shows the relationship between the processor uti-
lization and the blade power consumption. A tunable CPU-
intensive workload was used to gather the data from our exper-
imental setup, described in Section 5.1. As shown by the trend
line in Fig. 2, the power consumption of the blades can be ap-
proximated utilizing a linear model fit from the measured data as
follows:

PB j = gB ∗Util j +PB,idle, for any blade j, (3)

where Util j is the CPU utilization of blade j, gB is a constant co-
efficient, and PB,idle is the power consumption of the blade when
the CPUs are idle. This model is similar to those used in several
other studies [11, 6, 12].

3.1.2 Fan power consumption
Fan power consumption is approximately a cubic function of

the rotational speed of the rotor given in revolutions per minute
(RPM) [13]. In our enclosure, the relationship was determined
by manually setting the fan speed, FS, and then recording the
power consumption of the individual fan, which is measured
and reported by the system. Figure 3 shows the raw data ob-
tained from this process. Note that there are frequencies, such as
17,100 RPM (95% of maximum speed) in Fig. 3, that the fans
avoid to prevent resonance. In our experiments, the fan power
is approximated using a 3rd-order polynomial, also shown as the
solid line in Fig. 3:

PF,i(FSi) = a0 ∗FS3
i +a1 ∗FS2

i +a2 ∗FSi (4)

The parameters a0, a1 and a2 were fit using the data samples and
the origin. Note that the actual fan power is not exactly a cubic
function, which can be due to the specific operation conditions of
the fans, the air flows and the enclosure thermal architecture. But
we believe the model derived from experiments is representative
under the normal operation conditions of the enclosure.

3.2 Temperature Models
A number of challenges have to be addressed in order to

create an effective model for the thermal environment of the en-
closure shown in Fig. 1:

Zonal variations and complexity. There are many ways in
which complexity in a shared system like the enclosure can arise.
For instance, as mentioned earlier, fans are shared at the enclo-
sure level and each fan contributes partially to the airflow across
each blade. Figure 4, explained later in Section 3.2.1, quanti-
fies this dependency between the fans and the blades via a heat
map. The figure shows that while blade temperatures are most
affected by fans closest to them, the degree of influence of each
fan as well as the number of fans that can significantly affect a
blade shows a lot of variation between blades. The details on how
the values were derived will be described in Section 3.3.3. Apart
from the air flow generated by the fans, an individual blade’s
temperature is also affected by the heat generated by the work-
loads it runs. Blade inlet air temperature (Tamb) can also differ
between blades due to external physical effects such as the recir-
culation of hot air near the edges of an enclosure in a data center.
A consequence of all these effects is that the model correlating
temperature changes to fan speed changes is a complex I:J multi-
variable mapping function across four vectors (FS, TCPU , Util,
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Figure 4. Blade:Fan Relationship

Tamb) rather than a simple function that can be reused across all
blades and fans.

Inadequate coverage for thermal variables. While com-
plex, as will be seen later, such an I:J multi-variable model can be
formulated through the application of heat transfer theory. How-
ever, a key challenge is the absence of sensors in current systems
that provide the level of detailed coverage for specific physical
aspects of the system. An example would be sensors to detect
blade-level volumetric airflow rate which affects heat sink ther-
mal resistance. This requires additional work in the creation of
models to ensure that the final relationship only involves vari-
ables that can be measured in current systems.

Steady-state versus transient behavior. When fan speeds
or workload demands change, the change in power consumed is
almost instantaneous. However, this does not hold true for tem-
perature. Temporal delays exist between a change in fan speed
or utilization and the corresponding effect on blade temperatures.
While some fraction of the temperature change occurs within a
few seconds, it can take a few minutes for temperatures to con-
verge (assuming no other disturbances in fan speed or utilization
occur). We derive in this section two types of models: a steady-
state model, which defines the relationship between the actuators
and sensors when both are at steady states, and a dynamic model,
which represents the transient process.

3.2.1 Steady State Models
Our derivation of the steady state model for CPU tempera-

tures leverages key concepts from heat transfer theory. Specifi-
cally, we use the concept of thermal resistance [14] to develop a
model that relates CPU temperature to ambient temperature, heat
generation, and volumetric air flow rate. Using two other rela-
tionships between volumetric airflow rate and fan speed, and be-
tween blade heat dissipation and CPU utilization, we obtain the

required model relating the CPU temperature to the fan speed,
the CPU utilization, and the ambient temperature (note that, as
discussed earlier, all these terms are vectors).

We start by describing the thermal resistance, R, of a blade.
In general, thermal resistance between two points is represented
by the ratio of the temperature difference between the two points
and the heat transferred per unit of time between those points.
In our work, we are interested in the heat transfer between the
CPU and the ambient air flowing through the blade. The thermal
resistance is then defined as:

R j =
TCPU j −Tamb j

Q j
, for any blade j, (5)

where Q j is the heat transfered per unit of time between the
CPU and the ambient air. Given that the processors are dom-
inant in both the power consumption and the power variance of
the blades, we use the CPU power consumption, PCPU , as a proxy
for Q. Similar to the blade power model (3), the CPU power is
modeled as a linear function of its utilization as follows:

PCPU j = gCPU ∗Util j +PCPU,idle, for any blade j. (6)

Note that the model may have different slope gCPU from that in
the server power model.

The temperatures and the heat transfered are external indica-
tors of thermal resistance. Internally, thermal resistance depends
on the material properties through which the heat is transfered,
its geometry, fluid parameters like flow rate and turbulence, and
interfacial effects between different materials (i.e. air flowing
over a solid surface). In our work, we assume forced convection
is the dominant mode of heat transfer from the CPU package (via
the heat sink) and do not consider second order mechanisms, like
radiation, that would add unnecessary complexity to the model.
We also assume all of the heat generated by the CPU is trans-
ferred to the air through the heatsink. The thermal resistance for
an individual blade is, therefore, approximated by

R j =
C3

V̇ nR
j

+C4, for any blade j, (7)

where V̇j is the volumetric air flow rate through blade j, C3 and
C4 are constants related to the fluid and material properties of
the air, the CPU package, and the heatsink. The parameter nR
defines the shape of the thermal resistance curve as a function of
the air flow rate. It’s primarily related to the level of turbulence in
the flow which is a function of air velocity through the heatsink
and heatsink design. All together, Equations (5), (6), and (7)
represent the thermal model of a single blade processor.
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Given that the air flow through one blade is an aggregate of
the flows generated by all of the fans, and the rate of the air flow
generated by each fan is approximately proportional to the fan
speed, we can correlate the per-blade air flow to the fan speeds
in the following manner:

V̇j = ∑
i

ηi j×FSi, for any blade j, (8)

where ηi j is the correlation index between the speed of fan i and
the air flow rate in blade j, and FSi is the speed of fan i. The
variation in the derived values for ηi j can be seen in Fig. 4. In
light of Eqn. (5), (6), (7) and (8), the CPU temperature in steady
state can be represented by a function of the processor utilization,
the fan speed, and the ambient temperature as follows:

TCPU j = (gCPUUtil j +PCPU,idle)
(

C3

(∑i ηi jFSi)
nR +C4

)
+Tamb j ,

for any blade j. (9)

3.2.2 Transient Model
In transient heat transfer theory, the rate of change in the

temperature of a device, like a CPU, is related to the rate at which
heat is generated within the device and the rate at which heat can
be transferred from the device to a cooling medium, like air in
the present case. By conducting an energy balance among these
three basic elements (rate of change of temperature, heat genera-
tion, and heat transfer), a differential equation can be formed that
governs this dynamic relationship [14]. When heat transfer from
a solid device, like a CPU package, is dominated by convection
rather than by conduction within the package, the lumped capac-
itance method can be used to approximate the temperature of the
device. Using this method, an energy balance over the device
results in the following:

C1
dTCPU, j

dt
=

C2

R j
(Tamb, j−TCPU, j)+Q j, (10)

where C1 and C2 are constants related to the fluid properties of
air, CPU package geometry, and material properties, and R j is
the thermal resistance given in Eqn. (7), t is the time, and Q j is
the heat transferred from the device. Model (10) shows how the
transient temperature is affected by the workload, the environ-
ment and the fan speed (through R). At steady state, the CPU
temperature can be derived from Eqn. (10), which is exactly the
same as in (9).

The speeds of the fans will be tuned in discrete-time inter-
vals through the fan controller, for which we need discrete-time
models of the blade temperatures. Assume that the temperatures

are sampled using a sampling interval of ∆t. To get the discrete-
time model, we assume that Tamb is constant in each sampling
interval, or varies relatively slowly compared with TCPU, j, which
is usually true in practice. We also assume that the fan speeds are
constant in each sampling interval, which means that the thermal
resistance is fixed. Then the model defined in Eqn. (10) can be
approximated as a first-order dynamic system in the form as fol-
lowing

C1R j

C2

d∆Tj

dt
+∆T =

R j

C2
Q j, (11)

where ∆Tj = TCPU, j−Tamb, j. A first-order system can be charac-
terized by two parameters: a time constant τ and a steady-state
gain G. The first parameter represents the time the temperature of
the system takes to reach approximately 63% of its steady state
upon a step change of Q. From the model we know that the time
constant is τ j = C1R j

C2
, which is a function of the thermal resis-

tance, but independent of the heat transferred. The gain of the
system is equal to G j = Tj(∞)

Q j(∞
= R j

C2
, which is again a function

of the thermal resistance. When the temperatures are sampled
in discrete time, the sampled-data system for (11) is as follow-
ing [15]:

∆Tj(k +1) = e
− ∆tC2

C1R j ∆Tj(k)+(1− e
− ∆tC2

C1R j )
R j

C2
Q j. (12)

This model is the exact equivalent of the continuous-time model
as in Eqn. (11), which means that they have the same time con-
stants and the same steady-state gains. Under our assumptions
on Tamb and FS, i.e, they are constant during the sampling in-
tervals, Eqn. (12) represents the model (10) in discrete time. In
our experiments, we have used (12) to predict the server temper-
atures as functions of the workload, the environment, and the fan
speeds.

It is worthwhile to notice that, when ∆t is small enough such

that e−
∆tC2
C1R ≈ 1− ∆tC2

C1R , the model in Eqn. (12) can be approxi-
mated as following:

∆Tj(k +1) = (1− ∆tC2

C1R j
)∆Tj(k)−

∆t
C1

Q j, (13)

which equals to the discretized model of (10) using Euler’s
method dT

dt ≈
T (k+1)−T (k)

∆t . The model in Eqn. (13) is simpler
than that in Eqn. (12). However, if the sampling interval ∆t is
not small enough, there will be significant error when Eqn. (13)
is used to predict the temperature. That’s why we have used
Eqn. (12) instead of (13) in our experiments since the sampling
interval in our case was in the same order of the time constant.
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The steady-state and transient models may not exactly rep-
resent the physical properties of the enclosure, which can be af-
fected by many factors. However, first-order factors are expected
to be captured by the models. The next section describes how
the model parameters are identified through experiments run in
a production environment together with a validation that shows
these models can represent the state of the enclosure accurately
enough for dynamic control.

In the models presented in this section, we assume that the
constant parameters gCPU , PCPU,idle, nR, C1, C2, C3, C4 are the
same across the servers. This is reasonable for the servers in
our test bed since all the blades are almost the same. However,
this assumption is not necessary for the viability of our modeling
approach.

3.3 Parameter identification and model validation
Given that the steady-state model (9) can be derived from the

transient model (12), we focus on the models defined by Eqn. (5-
7) and Eqn. (12). There are altogether 167 parameters in these
models, including gCPU , PCPU,idle, nR, C1, C2, C3, C4, and ηi j,
for i = 1,2, . . . ,10 and j = 1,2, . . . ,16. To identify the values
of these parameters, we ran a series of experiments on our test
bed presented in Section 5.1. In this section, we describe what
experiments we conducted, how the parameters were identified
and how the models were validated.

3.3.1 Power consumed by the processor
As described previously, we assume that the heat transfered per
unit time between the CPU and the ambient air is approximated
by the power consumed by the CPU, which is a linear function
of the CPU utilization, as defined in Eqn. (6). Note that the blade
power is also represented as a linear function of the CPU utiliza-
tion, as in Eqn. (3), the slope of which is derived from experi-
mental data. The two slopes gB and gCPU are correlated. In the
test bed, the blades have two sockets, each hosting two cores. In
the experiments conducted for blade power model, all the cores
were running workloads at the same CPU utilization level. Since
Eqn. (6) is only modeling one CPU socket, we can set approxi-
mately

gCPU =
gB

2
. (14)
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Figure 7. Thermal resistance as function of fan speed

The other parameter PCPU,idle can be estimated based on
gCPU . Note that the thermal resistance only depends on the air
flow rate. For a given fan speed, the thermal resistance is in-
dependent of the amount of heat that is transfered. Then for any
two heat dissipation levels Qa and Qb, corresponding to CPU uti-
lization levels Utila and Utilb, we have Ra = Rb. From Eqn. (5),
we can derive the PCPU,idle as following:

PCPU,idle = gCPU
∆TaUtilb−∆TbUtila

∆Ta−∆Tb
, (15)

where again ∆T = TCPU −Tamb.
We run one experiment to identify the parameter PCPU,idle

based on the relation Eqn. (15), the metrics in the right hand
side of which are known or measurable using the sensors readily
available. At the beginning, the CPU was idle, i.e., with zero uti-
lization, and the speeds of all the fans were set to 50%. After the
server temperatures converged, the utilization levels were set to
100% by running a CPU intensive workload while the fan speeds
were kept unchanged. Figure 5 shows the trajectories of ∆T for
all the 16 servers. We then used the steady-state values of ∆T
and the utilization levels to derive PCPU,idle based on Eqn. (15).
Figure 6 shows PCPU,idle values for the 16 servers. All are similar
with the exception of blade 11. PCPU,idle was set to the mean of
those values in later experiments.

3.3.2 Thermal resistance
Since the temperature measurement is available, and the heat
transferred can be estimated, thermal resistance can be identified
using the relationship in Eqn. (5). The factor nR is then derived
from the relationship defined in Eqn. (5-8). Assume that all the
fans have the same speeds (FS), then from Eqn. (7) and (8), we
have

R j =
C3

(∑i ηi j)
nR

1
FSnR

+ C4 (16)
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To estimate nR, a series of experiments were designed. In each
experiment, the speeds of all the fans were set to the same level
for 40 minutes. The CPU utilization was set to zero for 20 min-
utes, and then pushed to 100% for another period of 20 minutes.
One set of thermal resistance values for all the servers were then
estimated from the steady-state temperature values. The exper-
iments were repeated for different sets of fan speeds between
30% and 100%, with a step of 5%. Using all the thermal resis-
tance samples and the fan speed values, we got the curves for the
relation between R and FS. It was found that the curves, each for
one blade, were close to each other and had approximately the
same shape. In Fig. 7, the red line represents the mean of the R’s
as a function of the fan speed, from which we can approximate
nR through curve fitting.

As the fans are varied in speed during normal operation, it’s
possible that the flow characteristics could range from laminar,
to transitional, to turbulent flow. An analysis of the thermal
resistance curve shown in Fig. 7 indicates that the flow likely
transitions from laminar to transitional flow at a speed of around
60%. To test this hypothesis, the Reynolds number of the flow
through the blades was calculated using the hydraulic diameter of
the blade gap in Fig. 1. (The gap between blades and the height
of the blades was used in the hydraulic diameter calculation.)
Transitional flow was estimated to occur in the blade gap at a fan
speed of 56%, which is very similar to the location of the inflec-
tion in Fig. 7. It’s desirable to use a single function to represent
the thermal resistance curve over the entire operating range of the
fans. We tried different numbers for nR, and found that the curve
with nR = 1.5 matched the best with the experimental data espe-
cially in the lower and higher ends. This is consistent with flow
that undergoes transition within the range of fan speed operation.
(Note that nR should range between 1 and 2 with higher values
associated with more laminar flows.) This value was utilized in
later experiments to determining the remaining parameters.

3.3.3 Parameters for transient models
With gCPU , PCPU,idle, and nR identified, the remaining parame-
ters were estimated through a system identification experiment,
in which the speeds of all the fans and the CPU utilization levels
on all the blades were varied randomly every 30 seconds. The ex-
periment lasted for a few hours. The metrics including the CPU

utilization, the ambient temperatures, the CPU temperatures, and
the fan speeds were collected in real time. The data samples and
the temperature model defined by Eqn. (7), (8) and (12) were
then fed into the nlin f it tool in Matlab, which fits through nonlin-
ear regression the values of all the remaining parameters except
C3. Note that C3 and the η’s cannot be identified independently.
In our experiment, C3 was set to 1.0 which is arbitrary.

A few tests for model validation implied that the models and
the parameters identified are reasonable. Figure 4 provides one
validation of the models. In this case, and as described in Sec-
tion 3, nearby fans having a more significant impact on blade
temperatures than those located farther away matches our intu-
ition. In Fig. 8, a separate set of data samples from experiments
were used for model validation. The model-predicted temper-
atures accurately captured the impacts of the workloads on the
measured temperatures, with the prediction errors less than 5%
of the measured ones. Note that only data in discrete time points
were sampled or predicted, and the lines are only to show the
trends.

4 Controllers
The models developed in the previous section do imply chal-

lenges in the fan controller design due to zonal variations and
complex interdependencies between the fans and the blades, and
the presence of nonlinear relationships, for instance, between the
fan speeds and the temperatures. However, the models also pro-
vides us intuitions to decompose the complex optimization prob-
lem into multiple sub-problems that are easier to be solved. We
present in this section one such optimal fan controller, called FC,
that we implemented in our prototype and evaluated through ex-
periments.

4.1 Optimal fan controller
The objective of the fan controller (FC) is to minimize the

total fan power while satisfying the cooling requirements of all
the blades by periodically adjusting the fan speeds. Since the
fans are shared among the blades, the controller needs to con-
sider all the fans and the blades simultaneously. One immediate
solution for the fan controller is to solve the following optimiza-
tion problem at the end of each control interval k:

min∑i PFi (17)
TCPU, j(k +1)≤ Tre f , for each blade j (18)
LBi ≤ FSi ≤UBi, for each fan i (19)

The objective function aims to minimize the sum of the power
consumptions (PFi ) of all the fans. The first constraint ensures
that the CPU temperature for each blade j in the next interval
k + 1 remains below Tre f . The second constraint ensures that
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each of the fan speeds does not exceed its lower bound (LB) or
upper bound (UB). The optimal solution will be the fan speeds
to be configured for the next control interval. However, there are
a few challenges for this optimization problem:

1. The cost function and the first set of constraints are nonlin-
ear, which preclude the use of efficient optimization tech-
niques such as linear programming.

2. The transient thermal model in Eqn. (12) is needed to pre-
dict TCPU j(k + 1), based on the current CPU temperature
TCPU j(k), the ambient temperature Tamb(k), and the esti-
mated CPU power consumption PCPU j . To represent the
constraints in terms of fan speeds, we need to express the
thermal resistance (R j) as a function of all the fan speeds FS
(see Eqn. (7) and (8)). These nonlinear constraints preclude
the use of most convex optimization tools.

3. This problem may not be feasible since the fan speeds are
physically upper bounded and such that the lowest tempera-
tures that are achievable could be higher than the thresholds.
The feasibility issue has to be carefully considered in each
control step.

Some facts observed on the models can help us to deal with
the challenges. Simple analysis shows that the first-order deriva-
tive of ∆Tj(k+1) defined in Eqn. (12), w.r.t. R j, is positive. That
is, the temperature TCPU, j(k + 1) is a monotonically increasing
function of R j. Assuming that the Tamb(k + 1) is the same as in
previous interval1, the constraint (18) can then be converted as
a bound on R j. Using the model (7), the constraint can further
be converted to that on V̇j, which actually represents the cooling
demand of blade j in terms of air flow rate.

Based on above facts, we define the optimal fan controller
(FC) as following that solve the optimization problem in two
steps:

Step 1: For each blade j, solve the local optimization prob-
lem

minV̇j (20)
s.t. TCPU, j(k +1)≤ Tre f (21)

This problem is to find the minimum cooling demand of the
blade that can meet the temperature requirement. For dis-
cussion followed, we assume it is V̇ o

j .
Note that the fan speeds are upper bounded (by UB), which
means that the air flows available to the blades are also
bounded, and such that V̇ o

j may be infeasible. Define V̇jM =
∑i(ηi jUBi), the maximum air flows available for the blade j,
then the minimum but achievable flow rate in blade j should

1In our experiments, the difference of the ambient temperatures in two con-
secutive intervals were at most 1C.

be as following:

V̇ ∗
j = min(V̇jM,V̇ o

j ). (22)

Step 2: With the minimum air flow demand V̇ ∗
j from each

blade j, solve the global optimization problem

minFS ∑i PFi(FS) (23)

∑i ηi jFSi ≥ V̇ ∗
j , for each blade j (24)

LBi ≤ FSi ≤UBi, for each fan i (25)

The problems in the two steps are more tractable than that
defined by Eqn. (17-19). In the first step, given that the tempera-
ture TCPU, j(k + 1) is a monotonically decreasing function of the
flow rate V̇j, the problem can be solved through efficient search
algorithms, for instance, binary search, started from the range
defined by V̇jm and V̇jM , where V̇jm = ∑i(ηi jLBi). The problem
in the second step is a convex optimization problem [16] with a
polynomial but convex objective function and linear constraints.
It can be solved using standard tools. In our prototype, a Python-
based software package, cvxopt [17], was used.

4.2 Integral Fan Controller
This section contains a brief description of an alternate fan

controller that will be used to compare the FC against. Unlike the
FC, which is a predictive controller, the Integral Fan Controller
(IFC) is a simple reactive controller that increases or decreases
the fan speeds based on the error between the temperature refer-
ence and current measurement. It is similar to commercial con-
trollers used in industry today. The IFC measures the maximum
temperature of the blades and compares it to the reference thresh-
old Tre f . It then either increases or decreases the fan speed de-
pending on whether the measured temperature is higher or lower
than that reference. Given that each blade is mainly affected by
the fans present in its row, as shown in Fig. 4, the IFC separately
controls the fan speeds on a per-row level based on the maximum
blade temperature recorded for that row.

5 Evaluation
5.1 Experimental Setup

To evaluate the performance of the fan controllers, we used
an HP c7000 BladeSystem enclosure with 16 ProLiant BL465c
server blades and 10 fans. As shown in Fig. 1, the blades and fans
within this enclosure are equally divided into two rows. Each
blade is equipped with two AMD 2216 HE processors with two
cores each, and comes with seven pre-installed temperature sen-
sors. Three sensors are located in the CPU region, two for the
memory regions, one near the front to measure the inlet air tem-
perature, and one that measures the motherboard temperature.
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The enclosure also contains an Onboard Administrator (OA), an
embedded module running Linux, that provides integrated enclo-
sure management. The OA allows us to record all the tempera-
ture readings as well as the power used by the entire enclosure
and each individual fan. It also allows us to control the speed of
individual fans between 3,000 and 18,000 RPM.

The fan controllers were run on a separate workstation, con-
nected to the OA for temperature information and for fan speed
control. While the enclosure can handle higher temperatures, we
set Tre f = 65C and the minimum fan speed (LB) to 4,000 RPM to
ensure equipment safety while conducting our experiments. The
sampling and control interval ∆t was set to 30 seconds due to the
actuation delay for fan speed configuration through the software
and firmware stacks.

For comparison purpose, we run two experiments, in which
the fan speeds were under control of the optimal fan controller
(FC) and the feedback controller (IFC) respectively. To have fair
comparison, we tuned the gain parameter of IFC so that the ther-
mal performance, or the temperature violation levels between the
two controllers are close to each other.

5.2 Benchmarks
To obtain a realistic estimate of the possible savings of our

system, we used traces gathered from 64 servers in real data cen-
ters running e-commerce and database workloads and are rep-
resentative of a traditional IT environment found in large cor-
porations. Among the 64 traces, 80% of them have an average
utilization lower than 24%. While this low utilization is typical
in data center environments, it does not mean that the resource
usage is uniform over the entire time period. Our analysis of
the traces showed that not only were they bursty, but they also
exhibited periodicity.

In our experiments, each blade hosted four Xen [18] virtual
machines, and inside each virtual machine, a workload genera-
tor tool was utilized to replay one of the 64 traces. While the
traces were gathered over a period of a number of days, in the in-
terests of time, our experiments used a representative four-hour-
long segment from the busy periods.

5.3 Results: Fan Power
On average, the total power consumed by the 10 fans was

213 watt when they were under control of the feedback controller
(IFC). It was 172 watt while under control of the optimal con-
troller (FC). Compared with IFC, the FC controller reduced fan
power usage by about 20%.

We examine this result in detail in Fig. 9, which shows the
time average observed fan speeds for the IFC and FC. Overall,
more power was consumed with the IFC as the fans under its con-
trol, with the exceptions of 1 and 6, were driven to higher speeds
than those of the FC. Unlike the IFC, where the fans in the same
row run at the same speed, the FC varies the fan speeds with a
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much finer granularity and is able to provide “on-demand” cool-
ing to the blades. Figure 10, displaying the average utilization
and ambient temperature of each blade, provides further insight
into these results2. For example, blades 15 and 16 had the high-
est utilization and were located in a region of the enclosure with
higher ambient temperatures. Given that fans 6 and 7 have the
strongest cooling effect on the two blades, as shown in Fig. 4,
their speeds, shown in Fig. 9, were higher than the rest.

While the savings in cooling power observed is significant,
we consider the results to be conservative due to the fact that the
enclosure used for our experiments is over-provisioned in cool-
ing resources and uses very low-powered CPUs. Average fan
power consumption, therefore, tended towards the lower half of
the fan power curve shown in Fig. 3. Given the nonlinearity in
fan power consumption, we expect that for future generations
of blade servers that more fully utilize the available cooling re-
sources, the optimal fan controller will provide even greater sav-
ings.

5.4 Results: Temperature Control
Besides of power consumption, thermal management perfor-

mance should be considered when evaluating the control meth-
ods. Figure 11 shows the temperature trajectories of the blade
#1, when the blades were under control of FC and IFC respec-
tively. (Note that the temperature sensors returned only integers

2Note that the results shown in Fig. 10 are identical for both the FC and IFC
scenarios as the workload is fixed and there were no changes in the data center
environment during these experiments.
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which were in degree C.) With the optimal fan controller FC, the
temperature was maintained close but below the reference, 65C,
most of the time. However, with the IFC feedback controller, the
temperature was kept further below the reference, and oscillat-
ing in a large range. Similar difference can be found from the
temperature trajectories of all the other blades. The difference
between the temperature trajectories is due to that of the two
controllers: individual cooling demand is considered by FC all
the time, while only the highest temperature of the blades in the
same row is under control of IFC. Figure 12 provides statistics
on the temperature samples of all the blades. It is found that 98%
of the samples are not higher than 66C when using FC, and the
number is 97% when using IFC. These numbers mean that the
two controllers are comparable in term of maintaining the tem-
peratures below the thresholds. However, using FC, 57% of the
samples are in between 64C and 66C, while it is only 17% when
using IFC. With finer control granularity and more knowledge
on the blades, the FC minimized the energy consumption by the
fans by pushing each of the blade temperatures to their limits as
much as possible.

6 Conclusion
In summary, this paper has introduced an optimal and pre-

dictive MIMO fan controller for thermal management of servers.
To the best of our knowledge, this is the first model-based fan
controller for blade server environment. Using fundamental con-
cepts from heat transfer theory, we developed powerful models
that can capture complicated correlation among temperatures,
workloads, and fan speeds through simple experiments in a real
system and by using measurements provided by the system it-
self. We proposed a hierarchical fan controller that can simplify
the optimization problem and maximize the energy efficiency of
the fans by meeting the cooling demand of the individual servers.
Experimental results show that our controller can in real time
save significant amount of cooling power while maintain thermal
safety for the servers.

We believe that, both our modeling and control approaches
can be extended to tackle with other temperature metrics, e.g.,
those of memory, and other systems in larger scale, e.g., racks
and even data centers, which is a part of our on-going work. We
are also working on integration of the predictive approach and
feedback control for fan control as we believe that it can provide
even better control performance.
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