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ABSTRACT

Commercial buildings are significant consumers of electric-
ity. The first step towards better energy management in
commercial buildings is monitoring consumption. However,
instrumenting every electrical panel in a large commercial
building is expensive and wasteful. In this paper, we pro-
pose a greedy meter (sensor) placement algorithm based
on maximization of information gained, subject to a cost
constraint. The algorithm provides a near-optimal solution
guarantee. Furthermore, to identify power saving opportu-
nities, we use an unsupervised anomaly detection technique
based on a low-dimensional embedding. Further, to better
manage resources such as lighting and HVAC, we propose a
semi-supervised approach combining hidden Markov models
(HMM) and a standard classifier to model occupancy based
on readily available port-level network statistics.
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1. INTRODUCTION
In the United States alone, there are an estimated five

million commercial buildings. In 2010, these buildings con-
sumed about 1.3 trillion kWh of electricity, roughly one third
of the electricity generated in the country. The energy costs
for commercial buildings exceeds $100 billion annually. Due
to recent economic turmoil, and increased awareness of en-
vironmental concerns (e.g., global climate change), many
companies want to reduce power use in their buildings. Of-
ten, they turn to consulting firms for services like building
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energy efficiency analyses. The work described in this paper
addresses shortcomings of existing analyses of this sort.

A first challenge for improving power use in a building
is understanding how much power each appliance or device
in the building uses. One option is to install power meters
on all electrical panels, to collect usage data near the con-
sumers, and get a (approximate) per-appliance breakdown
of power use. The main disadvantage of this approach is
the cost to buy and install the meters. For companies that
own a lot of buildings (e.g., Walmart has more than 10,000
stores globally), this cost becomes prohibitively expensive.
Thus, one research question we address is where to place
a limited set of meters in a building, while minimizing the
information loss. We propose an efficient greedy algorithm
that provides a near-optimal solution.
A second challenge we investigate is how to systematically

monitor building energy use and automatically detect prob-
lems that arise over time. A limitation of manual consulting
services is that they can only identify issues that are occur-
ring at the time the analysis is conducted, and typically only
a limited number of panels are monitored, identified by an
expert based on the likelihood of energy savings. Having a
consultant repeat the study on a regular (e.g., daily) basis
is not cost effective, so an automated technique is highly
desired. We present results from applying our unsupervised
anomaly (fault) detection and ranking methods for monitor-
ing tens of meters over a six month period.
Lastly, consulting studies will typically recommend static

solutions to reduce building energy use. For example, turn
on all lights only during work hours (e.g., 8am to 6pm),
and turn most off otherwise. While such techniques do help
reduce power use in a building, further savings are possible.
One approach is to only turn on lights (or HVAC systems)
in areas where people are currently in, and to turn them off
when the people leave. To facilitate such dynamic resource
management, we developed a semi-supervised method for
occupancy modeling.
Our group is instrumenting three large commercial build-

ings on the HP Labs campus in Palo Alto, CA. This instru-
mentation will provide extensive data on the campus power
use, which will establish the “ground truth” against which
we will evaluate our power management methods.
The paper makes the following contributions:

• It proposes a greedy algorithm for meter placement in
a building’s electrical infrastructure, to maximize mu-
tual information while minimizing the cost of meter-
ing. Besides being computationally efficient, we also
show that the proposed greedy algorithm guarantees aCopyright 2012 ACM  978-1-4503-1462-6/12/08...

 

$15.00. 

994



2

1
3 6

5

4

5

Figure 1: The HP Labs Palo Alto Campus.

near-optimal solution. In particular, we show that mu-
tual information becomes submodular under a special
graphical structure that arises in distribution networks
such as power, water and gas.

• The meter placement results gauged by the ability of
the selected meters to predict measurements of the un-
selected ones are better on average by about 15% over
other methods considered.

• The results are demonstrated for six months of data
from a large test bed (three buildings totaling 300,000
sq. ft.). The anomaly detection, and occupancy mod-
eling techniques, described in more detail in [3], are
validated over this data set.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the HP Labs campus, the
power delivery and measurement infrastructure, and the cam-
pus power use characteristics. Section 3 describes our KDD
methods. Section 4 evaluates our methods. Section 5 dis-
cusses related work. Section 6 summarizes our work and
future directions.

2. CAMPUS OVERVIEW
The HP Labs campus contains six main buildings with a

total footprint of 700,000 sq. ft. We are instrumenting three
two-storey buildings (1, 2, 3), as highlighted in Figure 1.
These three buildings have a 300,000 sq. ft. footprint and
host about 500 occupants.

2.1 Power Distribution Topology
Buildings 1, 2 and 3 are powered by a single utility feed

(3-phase 12.5kV). An emergency generator (3-phase 480V)
maintains critical loads in the event of a utility failure. Au-
tomatic transfer switches (ATS) are used to revert from the
utility to backup power. Each building has a main distribu-
tion panel (3-phase 480V) that branches to about 10 major
sub-loads or sub-panels. A 135kW photo voltaic array on top
of Building 3 offsets power demand during daylight hours.

2.2 Power Data Collection
To date, 33 power meters have been deployed on our cam-

pus. These include meters for building and top-level load
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Figure 2: Campus power use and outside temperature.

distribution panels in Buildings 1-3. We are now instrument-
ing the second-tier distribution panels within each building,
to obtain finer grained electrical data for our future work.

The installed electrical meters are commercial (3-phase)
devices from Schneider Electric (www.schneider-electric.
com). Data is retrieved from each meter every 10 seconds
using the MODBUS over Ethernet protocol. The data in-
cludes metrics such as line voltage, real and apparent power,
power factor, current and frequency. The data is stored in
a PI-Server from OSIsoft (www.osisoft.com).

2.3 Campus Power Use Characteristics
As further motivation for the challenges addressed in this

paper, we briefly examine some characteristics of the cam-
pus power use.1 The top graph in Figure 2 shows the total
power use for Buildings 1-3 over a one week period (from
Jan. 22 through Jan. 28, 2012). The peak load is nearly 2
MW; understanding how to reduce this would translate di-
rectly to operational savings for the company. The base load
is roughly 1.5 MW. An implication of this is very little in-
sight on what is responsible for campus power consumption
can be gleaned (e.g., via disaggregation techniques like [9]
since none of the algorithms scale up to handle hundreds
to thousands of loads present in commercial buildings, and
further, none of the methods disaggregate base load) from
the aggregate power. This means that more meters must
be installed. Our meter placement algorithm addresses the
issue of how many meters are needed and where they are
needed, to minimize the cost while maximizing the informa-
tion obtained.
The middle three graphs in Figure 2 show the total power

demand for Buildings 1, 2 and 3, respectively. The bot-
tom graph shows the outside temperature. Comparing this
graph to the others reveals a correlation between outside
temperature, occupancy (i.e., work hours) and power use.
This motivates our investigation in Section 3.3 of occupancy
modeling, to reduce the use of heating or cooling in areas of
the building that people are not actively using.

3. METHODS
Figure 3 shows the overall framework of our approach.

The meter placement algorithm forms the basis for instru-
menting a building power infrastructure. For building power
management, we propose an unsupervised anomaly detec-
tion and ranking method based on low dimensional embed-

1We expect these characteristics to exist with many other
commercial buildings as well.
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tion information at panels in A, where

H(XL) = −
∑

xL

Pr(XL = xL) log2 (Pr(XL = xL)) , and

H(XL|XA) = −
∑

xL,xA

Pr(XL = xL,XA = xA)

log
2
(Pr(XL = xL|XA = xA)) .

Unfortunately, the optimization problem in (1) is NP-
hard. Hence, we propose a greedy approach to optimize
the given problem. The greedy algorithm chooses panels for
meter deployment in a sequential manner, where given the
set of panels that have already been chosen by the algorithm
(denoted by A), the next best panel is chosen to be the one
that maximizes the gain in mutual information, i.e.,

j∗ = argmax
j /∈A

I(XL;XA∪j)− I(XL;XA).

The solution obtained using the above greedy algorithm
is not necessarily an optimal solution for the optimization
problem in (1). However, we show below that the obtained
greedy solution is guaranteed to be near-optimal.

3.1.3 Near-optimality of greedy solution

To show that the solution obtained using the above greedy
approach is near-optimal, we rely on the theory of sub-
modularity introduced by Nemhauser et al. [21] and pop-
ularized by the work of Krause et al. [14, 13].
Krause et al. [14] study budgeted maximization problems

of the form

argmax
A⊂S

F (A)

s.t. |A| ≤ k,

where S = {1, · · · , N} is a set of elements and F : A →
R is a function that maps the set of elements to the real
line. A greedy solution to this problem is to select elements
sequentially according to

j∗ = argmax
j /∈A

F (A ∪ j)− F (A).

Krause et al. [14] show that the solution obtained using this
greedy approach is near-optimal in the following sense

Fgreedy ≥

(

1−
1

e

)

Fopt,

iff the objective function F is submodular, where submodu-
larity is defined below.

Definition 1. (Submodularity) Let F be a function
that maps from a set of elements S to the real line R. Then,
F is said to be submodular iff ∀A ⊆ B ⊆ S and for any
j /∈ B,

F (A ∪ j)− F (A) ≥ F (B ∪ j)− F (B).

In our optimization problem, the objective function is mu-
tual information, which unfortunately is not submodular,
except for some known special cases [13, 16, 17]. However,
as we will show below, in our problem setting, mutual in-
formation turns out to be submodular, thus guaranteeing
near-optimality of the above greedy algorithm.

Lemma 1. Given the tree topology described in Section 3.1,
let S denote the set of nodes in the tree and L the set of leaf
nodes. Then, ∀A ⊆ B ⊆ S, and for any j /∈ B,

I(XL;XA∪j)− I(XL;XA) ≥ I(XL;XB∪j)− I(XL;XB)
(2)

Proof. From the definition of mutual information, we
have

I(XL;XA∪j)− I(XL;XA) = H(XL|XA)−H(XL|XA∪j)

= H(Xj |XA)−H(Xj |XL,XA),
(3)

where the second equality follows from the first by expand-
ing the entropy terms and by simple manipulation of the
resulting terms. Note that the second term in (3) is equal to
0, i.e., H(Xj |XL,XA) = 0, as given the power consumption
at all the leaf nodes, the power consumption at any panel
upstream is completely deterministic.
Hence, the relation in (2) reduces to showing

H(Xj |XA) ≥ H(Xj |XB),

which follows from the principle of “information never hurts”
in information theory [5]. Thus, proving the submodularity
of mutual information under the given tree topology.

3.1.4 Use of Granger Causality

Another strategy to select meters would be by applying
Granger causality, which considers the direction of flow of in-
formation unlike mutual information. Note that this could
be remedied by the use of Transfer entropy, which is a ver-
sion of mutual information that can detect the direction of
information flow [24], however, transfer entropy is currently
restricted to bivariate situations.
Granger Causality (or G-causality) test, which was ini-

tially introduced in the field of economics [8], is a statistical
hypothesis test for determining whether one time series is
useful in forecasting another. It is normally tested in the
context of linear regression models. For example, let X(t)
and Y (t) be two time series. Consider the following two
auto-regressive models for predicting X(t)

X(t) =

p
∑

j=1

ajX(t− j) + e1(t)

X(t) =

p
∑

j=1

ajX(t− j) +

p
∑

j=1

bjY (t− j) + e2(t),

where p is the maximum number of lagged observations in-
cluded in the model, and e1(t), e2(t) are the prediction errors
(residuals) for the two regression models. If the variance in
the prediction error is reduced by the inclusion of Y (t) in
the model, then Y is said to G-cause X. In other words, Y
is said to G-cause X if the coefficients in {bj}

p
j=1

are jointly
significantly different from zero.
This test could potentially be used to reveal any hidden

causal relationships between the loads (leaf nodes in the tree
topology). Incorporating these relationships could further
lead to a better choice of panels for meter deployment.

3.2 Anomaly Detection
Anomaly (or fault) detection is useful in detecting ab-

normal behavior in the power usage data collected from a
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6. CONCLUSIONS
Commercial buildings consume significant amounts of en-

ergy. Concerns over energy prices and global climate change
are motivating building operators to reduce energy consump-
tion. In this paper, we propose and evaluate three methods
to aid in this effort. Our meter placement algorithm is both
efficient and effective, guaranteeing a near optimal solution
to information maximization by exploiting submodularity.
In comparisons with other methods, the ability of the meter
set selected using our algorithm to predict the measurements
of the unselected meter set were found to be superior (by an
average of about 15%). Our anomaly detection method is
shown to identify numerous types of unexpected consump-
tion patterns. Lastly, our occupancy modeling approach can
be used to dynamically control lighting or HVAC resources,
thereby reducing their energy consumption.
We plan to extend our work in several ways. We intend to

leverage occupancy modeling results for enhancing anomaly
detection. Further, we plan to automate the anomaly char-
acterization task, and extend our algorithm to incorporate
feedback from a building administrator. In addition, we are
increasing instrumentation on our campus, to aid in validat-
ing our methods. Finally, further methods may be developed
as we evolve our test bed into a demonstrator.
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