A Temporal Motif Mining Approach
to Unsupervised Energy Disaggregation

Huijuan Shao
Dept of Computer Science
Discovery Analytics Center

Virginia Tech, VA 24061

huijuans@vt.edu

ABSTRACT

Non-intrusive appliance load monitoring has emerged as a
popular approach to study energy consumption patterns
without instrumenting every device in an installation. The
resulting computational problem is to disaggregate total en-
ergy usage into usage by specific circuits and devices, to gain
insight into consumption patterns. We exploit the temporal
ordering implicit in on/off events of devices to uncover mo-
tifs (episodes) corresponding to the operation of individual
devices. Extracted motifs are then subjected to a sequence
of constraint checks to ensure that the resulting episodes are
interpretable. Our preliminary results show that motif min-
ing is adept at distinguishing devices with multiple power
levels and at disentangling the combinatorial operation of
devices.

1. INTRODUCTION

As the saying goes, sustainability begins at home. Greater
than ever before, there is now a significant interest in re-
ducing household energy footprints by providing consumers
with detailed feedback on their energy consumption pat-
terns. By contrasting such ‘drill-down’ data with neighbor-
hood profiles, consumers can make better informed decisions
about how their daily activities impact the environment as
well as their bottom line.

A key step in this endeavor is energy disaggregation. This
is the task of, non-intrusively, monitoring aggregate energy
usage (electricity, water) at a home/unit and separating it
out into individual appliances, subunits, and other spatial
dimensions, automatically using machine learning methods.
A variety of methods have been proposed, e.g., factorial
HMMs [3] and sparse coding [2] but the increasing diversity
of appliances to be accommodated and the spatio-temporal
coherence properties that must be modeled provides contin-
uing opportunities for algorithm innovation.

Here we propose a temporal motif mining approach [5; 6] to
energy disaggregation. We specifically focus on low-frequency
measurements and aim to characterize stable power con-
sumption events, in contrast to transients. The basic idea
is to discover the minimal episode which corresponds to a
complete state-change cycle by a device or part of a device.
Unlike state-of-the-art probabilistic methods that posit de-
tailed temporal relationships and involve complex inference
steps, we argue that our method is lightweight and, at the
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same time, capable of accuracy levels better than or compa-
rable to these more complex methods. Using this approach,
we conduct a thorough experimental investigation of our
method on the REDD [4] dataset, demonstrating the ability
of our approach to scale w.r.t. the number of devices and, at
the same time, achieve stability of disaggregation accuracy.

2. ALGORITHM

A complete state-change cycle of a device captures the de-
vice’s operation from when it comes on to being switched
off. But because we have access to only aggregated data,
one complete state-change cycle will be interrupted by the
operations of other devices. Motif mining aims to disen-
tangle such seemingly discontinuous profiles. We will show
how this approach has three inherent advantages over HMM-
based algorithms: (i) it leverages local methods for pattern
discovery; (ii) it can naturally scale to multiple devices, and
multiple states for a single device; and (iii) it is robust to
missing data.

A typical home usually receives 2-phase power from the util-
ity with each phase connected to many circuits. Each circuit
in turn has one or more devices that draw power from it.
High power consumption devices typically connect to both
the phases. Given only the aggreagte power consumption
data for each phase, in order to disaggregate the consump-
tion into individual devices requires us to build a working
motif model for the operation of each device.

The key steps of our approach are outlined in Fig. 1 where
the input is the aggregated power observation time series
and the output is the disaggregated time series for each de-
vice. First, rather than modeling the power consumption,
we model power change events (what we refer to as the ‘diffs
data.”). From the diffs data, we remove rapid spikes in ob-
servations, as might manifest when devices are turned on or
off. The power states for such spikes typically have a range
of (-10%,10%). Traditionally, the power state for a given de-
vice conforms to a Gaussian distribution rather than a fixed
level.

In the second step, we exploit motif mining techniques based
on frequent episode algorithms. The individual symbols
of the episode are state transitions, so we are looking for
frequently recurring sequences of transitions. As shown in
Fig. 1, two instances of one episode: (+610, -605), (+600,
-600) are discovered. Note that we allow for some tolerance
in defining power levels when counting occurrences. This
step typically results in many episodes that will be the sub-
ject of pruning algorithms later. Usually when (4600, -600)
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Figure 1: Disaggregation using temporal motif mining.
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Figure 2: Precision of disaggregation as a function of number
of aggregated circuits.

is frequent, (-600, +600) is also frequent.

In the third step, we aim to identify episodes which re-
flect key electricity consumption characteristics. Such in-
terpretable episodes are chosen by imposing a series of con-
straints. One constraint states that the net sum of power
levels in an episode must be near zero. That would exclude
episodes such as (4600, -1000). A second constraint is that
the first £ transitions in the episode should sum to a pos-
itive power level. For instance, the episode (4600, -1000,
+400), although satisfying the first constraint, could not
possibly be realized by a single device. Finally, we select
minimal complete episodes, with a view toward identifying
those transitions that could have been generated by only
a single device (or part of a device). For instance, if we
are given two episodes (+600,+400,-400,4-600) and (4600,-
600), then (4600,+400,-400,-600) is excluded because it is
not minimal. The third constraint is crucial since it helps
identify unseparatable episodes and which would correspond
to devices.

Finally, the extracted minimal complete episodes are recon-
structed to generate time series for each putative device; in
the experiments below we compare the disaggregated time
series with the ground truth time series for each device.
We conduct experiements using the REDD low frequency
data set from [4]. From the ground truth data, we synthe-
size aggregate circuit data, ranging from 1 to 18 circuits. For
each of the aggregated datasets, we apply our multi-level ap-
proach and compare it with the ground truth. We primarily

employ the measure of circuit level precision (the amount
of energy corresponding to each circuit). Fig. 2 shows that
circuit level precision is relatively stable with increase in
synthesized circuits from 1 to 11. Totally eleven synthesized
circuits can be disaggregated. There are 7 minimal episodes
corresponding to these 11 devices. Since Oven(4000W) con-
nect to two circuits, therefore, only one device for two cir-
cuits is identified. And two lighting1,2(64W) share simi-
lar power consumption, therefore, these two lights cannot
be distinguished. We combine the ground truth of these
two lights then compare with disaggregated episode(+64W -
64W). We found that the less frequency of episode gener-
ated by device,such as WashDryer(445W), or if the power
consumption is low, e.g. lightingl,2(64W) the precision is
prone to fluctuate with the increase of synthesized devices.

3. DISCUSSION

We have described an intuitive motif-based approach to dis-
aggreation that performs well relative to more complex algo-
rithms that perform detailed modeling of temporal profiles.
More importantly, we have demonstrated how our approach
is not just an aid to disaggregation but, as a byproduct,
also extracts temporal episodic relationships that shed in-
sight into consumption patterns. In this sense, our work
goes further than past work into addressing the real goal
of disaggregation research, viz. to understand systematic
trends in consumption patterns with a view toward identi-
fying opportunities for savings.

4. REFERENCES

[1] G.Hart. Nonintrusive appliance load monitoring. Pro-
ceedings of the IEEE 1992: 80(12).

[2] J. Zico Kolter, Siddharth Batra, Andrew Y. Ng: Energy
Disaggregation via Discriminative Sparse Coding. NIPS
2010:1153-1161.

[3] Hyungsul Kim, Manish Marwah, Martin F. Arlitt, Ge-
off Lyon, Jiawei Han: Unsupervised Disaggregation of
Low Frequency Power Measurements. SDM 2011:747-
758.

[4] J.Z.Kolter, Matthew Johnson. REDD: A Public Data
Set for Energy Disaggregation Research. SustKDD
2011.

[5] Bill Yuan-chi Chiu, Eamonn J. Keogh, Stefano Lonardi:
Probabilistic discovery of time series motifs. KDD 2003:
493-498.

[6] Dragomir Yankov, Eamonn J. Keogh, Jose Medina, Bill
Yuan-chi Chiu, Victor B. Zordan: Detecting time series
motifs under uniform scaling. KDD 2007:844-853.



