
Sparkle: Optimizing Spark
for Large Memory Machines and Analytics

Mijung Kim1, Jun Li2∗, Haris Volos1, Manish Marwah1, Alexander Ulanov3∗,
Kimberly Keeton1, Joseph Tucek4∗, Lucy Cherkasova5∗,

Le Xu6∗, Pradeep Fernando7∗

1Hewlett Packard Labs 2Ebay 3Facebook 4Amazon Web Services 5HyTrust 6University of Illinois 7Georgia Institute of Technology

Introduction: Given the growing availability of affordable
scale-up servers, our goal is to bring the performance benefits
of in-memory processing on scale-up servers to an increas-
ingly common class of data analytics applications that pro-
cess small to medium size datasets (up to a few 100GBs) that
can easily fit in the memory of a typical scale-up server [3].
To achieve this, we choose to leverage Spark, an existing
memory-centric data analytics framework with wide-spread
adoption among data scientists. Bringing Spark’s data an-
alytic capabilities to a scale-up system requires rethinking
the original design assumptions, which although effective
for a scale-out system, are a poor match to a scale-up sys-
tem resulting in unnecessary communication and memory
inefficiencies.
To address the inefficiencies and scalability issues, we

have designed and implemented Sparkle, an enhanced Spark
that leverages the large shared memory in scale-up systems
to optimize Spark’s performance for communication and
memory intensive workloads. We have released Sparkle, our
shuffle engine and off-heap memory store code to the public
under Apache 2.0 License [2]. We have also released the
generalized version of belief propagation algorithm [1] as an
example of an application that benefits from our optimized
Spark engine.
Sparkle Architecture: Figure 1 shows how Sparkle exploits
global shared memory to transform Spark from a cluster-
based scale-out architecture to a scale-up architecture.
At the bottom, a retail memory broker (RMB) layer pro-

vides a native memory management scheme that allows
higher layers allocate and free blocks of global shared mem-
ory in a scalable manner.
For data shuffle, we have developed a shared-memory

shuffle engine and integrated it into Spark under its pluggable
shuffle interface. For data caching, we have developed an off-
heap memory store that allows us to construct various large
scale data structures in shared-memory regions managed
by the RMB. The data structures developed include a sorted

∗Work done while at Hewlett Packard Labs

Off-heap 

Memory 

Store

Retail Memory Broker (RMB)

Shared-

memory 

Shuffle 

Engine 

Shared Memory

HDFS

FS

Node

Java VM

Shuffle Caching

…
Off-heap 

Memory 

Store

Shared-

memory 

Shuffle 

Engine 

Node

Java VM

Shuffle Caching

Figure 1: Sparkle using the global shared memory-
based architecture to transform Spark from a cluster-
based scale-out architecture to a scale-up architecture

array and a hash table, to store intermediate data processing
models, and to allow these models to be updated in place
during iterations.
Experimental Results: We conducted a series of experi-
ments to estimate the effectiveness of the shared-memory
shuffle engine and off-heap memory store. Our baselines are
Vanilla Spark on a scale-out cluster (Vanilla-Scaleout) and
Vanilla Spark on a scale-up hardware (Vanilla-Scaleup).

Our experiments include micro-benchmarks (GroupBy,
Join, PartitionBy, ReduceBy, and SortBy Spark operators)
and macro-benchmarks (TeraSort, PageRank and Belief Prop-
agation (BP) applications). They represent typical Spark
benchmarks andworkloads. FIXME: [show table or graph?]

REFERENCES
[1] Project sandpiper: Implementation of the loopy belief propagation algo-

rithm for apache spark. https://github.com/HewlettPackard/sandpiper.
[2] Sparkle: Optimizing spark for large memory machines. https://github.

com/HewlettPackard/sparkle.
[3] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-

stron. Scale-up vs Scale-out for Hadoop: Time to rethink? In Proceedings
of the 4th annual Symposium on Cloud Computing, page 20. ACM, 2013.

https://github.com/HewlettPackard/sandpiper
https://github.com/HewlettPackard/sparkle
https://github.com/HewlettPackard/sparkle

	References

