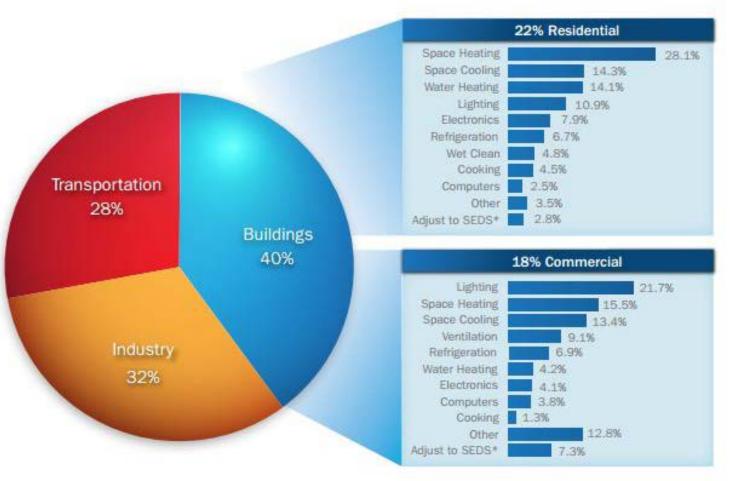
Computational Sustainability: Smart Buildings

CS 325: Topics in Computational Sustainability, Spring 2016

Manish Marwah Senior Research Scientist Hewlett Packard Labs manish.marwah@hpe.com

Building Energy Use



* Energy adjustment EIA uses to relieve discrepencies between data sources. Energy attributes to the commercial buildings sector, but not directly to specific end-users.

Buildings consume 40% of primary energy. Of that, 22% is consumed in residential buildings (dominated by space heating) and 18% in commercial buildings (dominated by lighting).¹⁴⁵ http://

http://energy.gov/sites/prod/files/ReportOnTheFirstQTR.pdf

Building Energy Management

Buildings consume a lot of energy

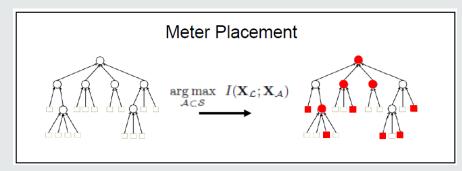
- Commercial buildings
 - 1.3 trillion kWh electricity annually → 1/3 of total US electricity generation
- Annual energy costs > \$100 billion

Poorly maintained, degraded, and improperly controlled equipment wastes 15-30% energy in commercial buildings

Outline

- Meter placement
- Anomaly detection
- Occupancy Modeling
- Energy Disaggregation

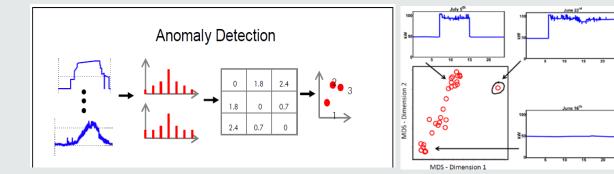
Where should meters be installed?

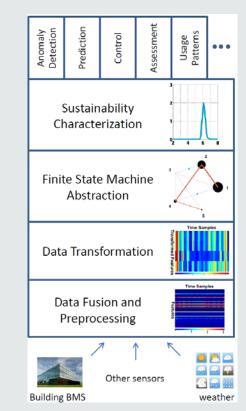


How can we detect degraded performance of equipment/devices in a buildings?

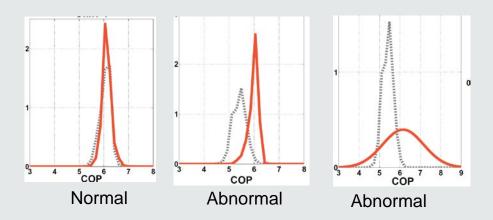
Ref.: KDD 2012, ACM BuildSys 2011, 2012

5



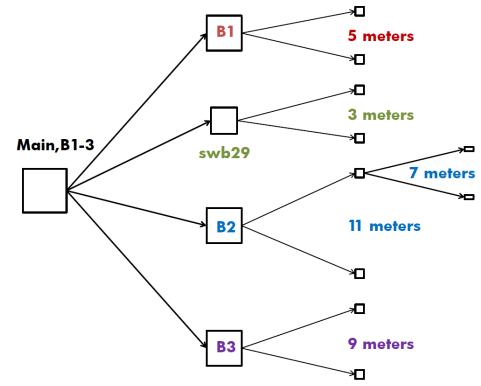


How can we cheaply measure building occupancy?



Test Bed

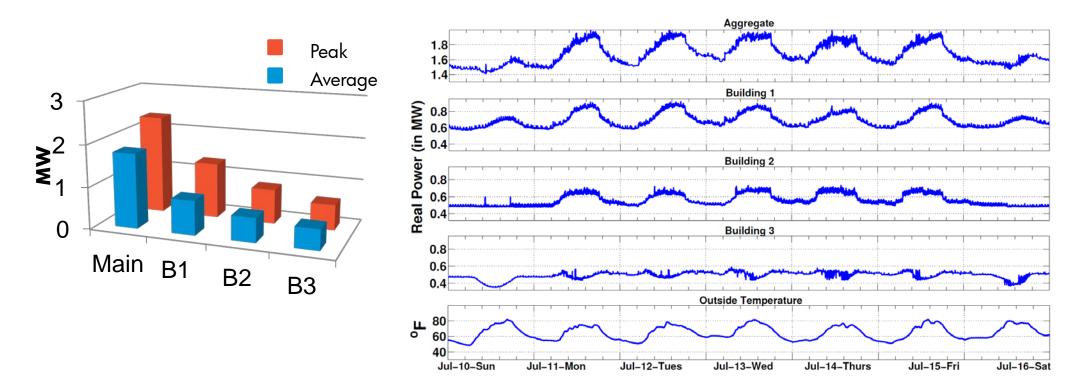
HP Labs, Palo Alto, CA campus Three buildings instrumented with ~40 power meters



Electrical Infrastructure Topology

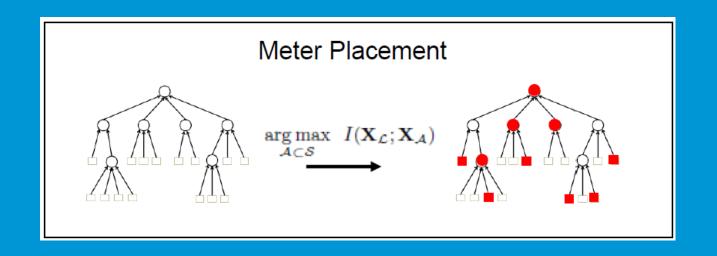
Campus Power Use

- Power consumption characteristics of Buildings 1, 2 and 3
- Building 3 has a 135kW PV array



Building Power Instrumentation

Where do I place the meters?



Building Power Instrumentation

Motivation: Obtain per-panel power consumption

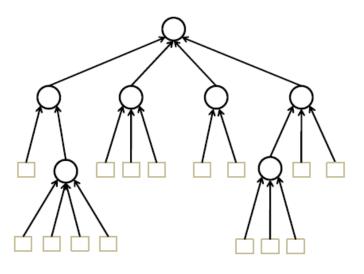
Challenge: Large number of panels, each power meter: \$1K-\$3K

Goal: Select optimal locations for meter deployment

Approach: Formulate as an optimization problem over panel hierarchy (a tree structure)

Panel Topology & Problem Formulation

Panel Topology



- **O** Panel feeding multiple sub-panels
- Panel feeding load(s)

Problem Formulation

Select *k* meters:

 $\operatorname{arg\,max}_{\mathcal{A}\subset\mathcal{S}} I(X_{\mathcal{L}}; X_{\mathcal{A}})$ s.t. $|\mathcal{A}| \le k$

- X: Set of metersS: Set of all possible locationsL: Set of all leaf locations
- \mathcal{A} : Selected locations

Greedy, Near-optimal Solution

- Optimal solution is NP-hard
- Greedy optimization: Select panels sequentially

$$j^* = \underset{\substack{j \notin \mathcal{A}}}{\operatorname{arg\,max}} I(\mathbf{X}_{\mathcal{L}}; \mathbf{X}_{\mathcal{A} \cup j}) - I(\mathbf{X}_{\mathcal{L}}; \mathbf{X}_{\mathcal{A}}).$$

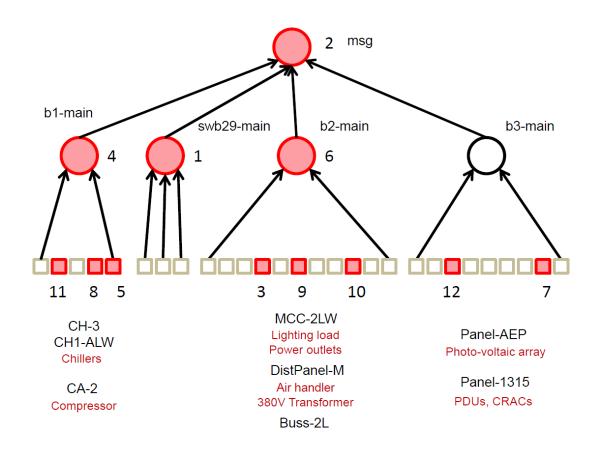
- We show objective function is **submodular** [KDD 2012]
- Thus, solution is guaranteed to be **near-optimal** [Krause *et al. 2006*]

$$I(\mathbf{X}_{\mathcal{L}}; \mathbf{X}_{\mathcal{A}_{greedy}}) \ge \left(1 - \frac{1}{e}\right) I(\mathbf{X}_{\mathcal{L}}; \mathbf{X}_{\mathcal{A}_{opt}})$$

~63%

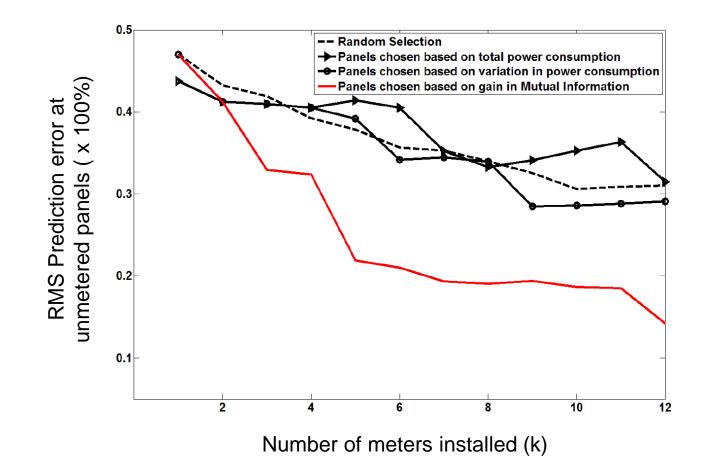
Experimental Results

Panels Selected for k = 12



Experiment Results

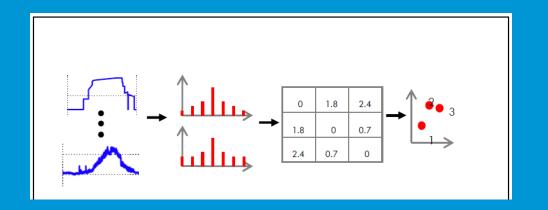
Prediction ability of the panels selected using the proposed approach



13

Building Power Management

Meter Anomaly Detection



Anomaly Detection

Motivation:

- Abnormal power usage may indicate:
 - wasted power
 - Failed or faulty equipment

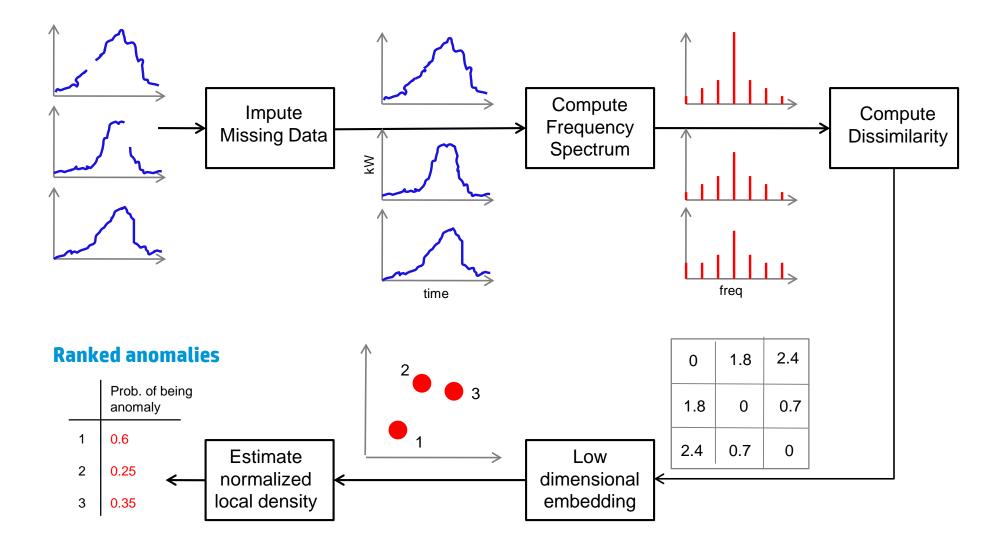
Challenge: Obtaining labeled data is expensive

• requires a lot of manual effort

Goal: Systematically detect abnormal power usage

Approach: Use an unsupervised approach

Algorithm

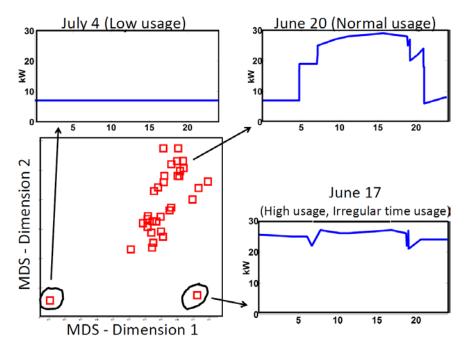


Anomaly Examples

Power Saving Opportunities

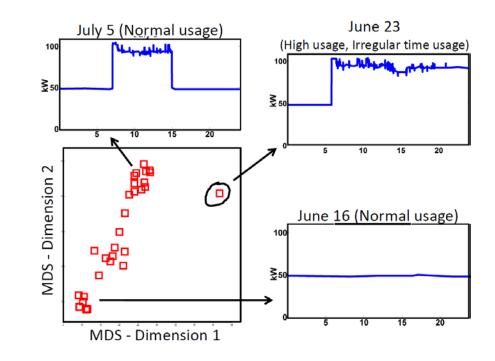
Load: Overhead Lighting in Building 1 Anomalies:

- Abnormal low usage (holiday)
- Abnormal time usage; Potential savings ~180 kWh



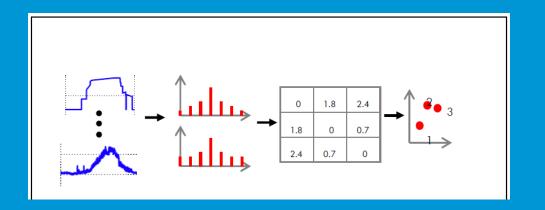
Load: Air Handling Units in Building 2 **Anomaly:**

 Abnormal time usage; Potential savings ~450 kWh



Building Power Management

Occupancy Modelling



Building Occupancy Estimation

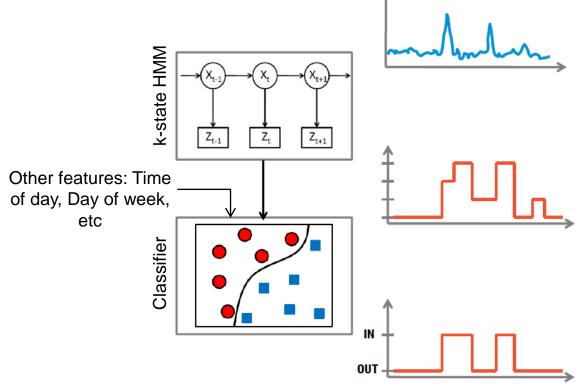
For optimal resource provisioning

- Motivation: Save energy via occupancy-based lighting/air conditioning (HVAC) scheduling
- **Challenge:** Fine-grained occupancy information is not available, and requires additional sensors
 - Expensive
 - Intrusive
- Goal: Accurately estimate occupancy of a zone using readily available data
- Approach
 - Use L2 port-level network statistics as a proxy
 - Semi-supervised method with minimal training data

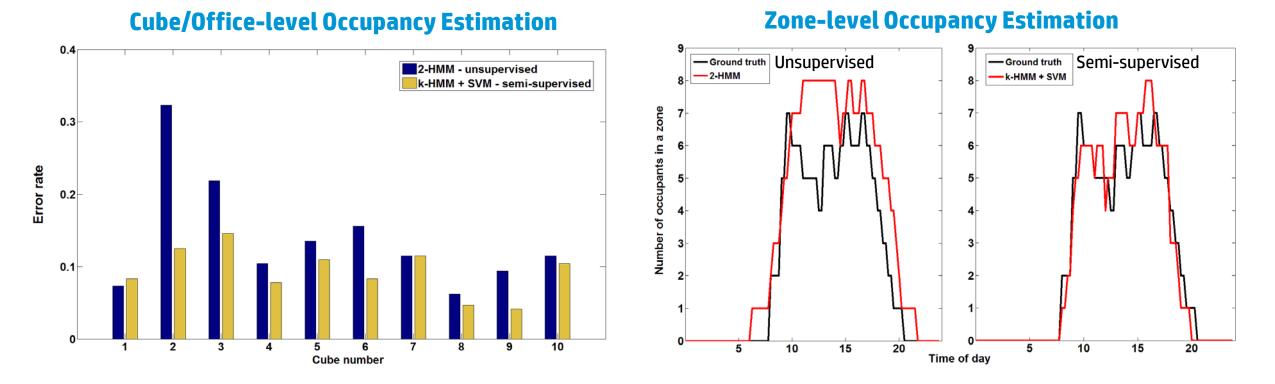
Methodology^[2]

Two stage Semi-supervised Approach

- Can efficiently incorporate external parameters
- Requires less training data



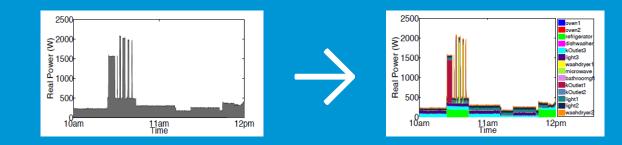
Experimental Results



- Occupancy is estimated at cube level (accuracy varied from 85% to 95%)
- This information is aggregated at zone level (8-12 cubes)
- Zone level estimated occupancy is then used to schedule lighting for each zone
- Estimated energy savings using this approach ~ 9.5%

Building Power Management

Energy Disaggregation



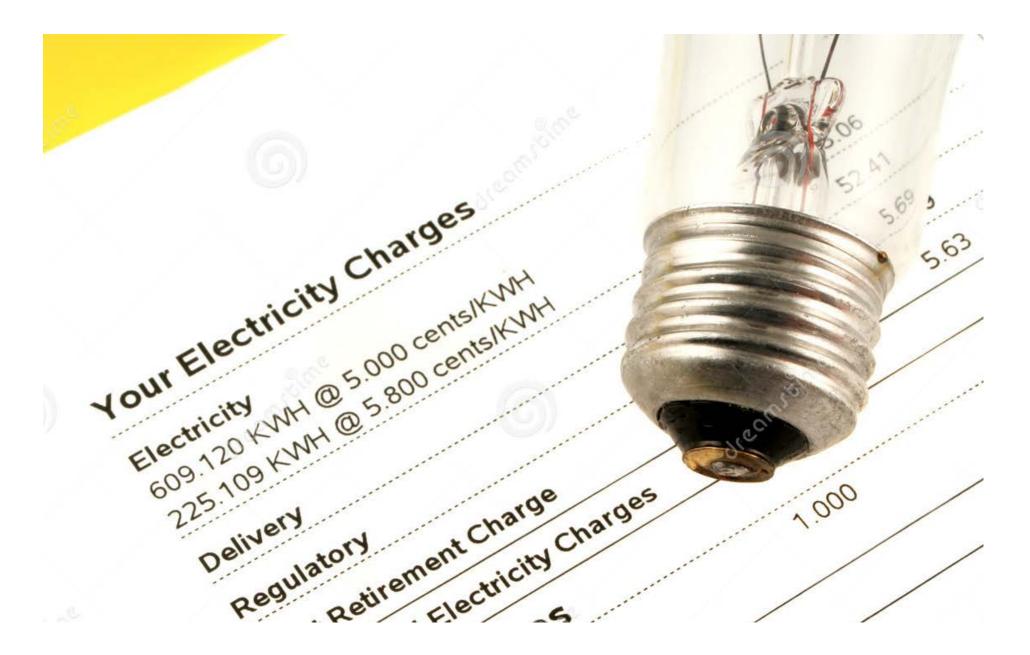
Residential Energy Consumption

"... the typical American household ... is also likely to use 20 percent to 30 percent more energy than necessary..."

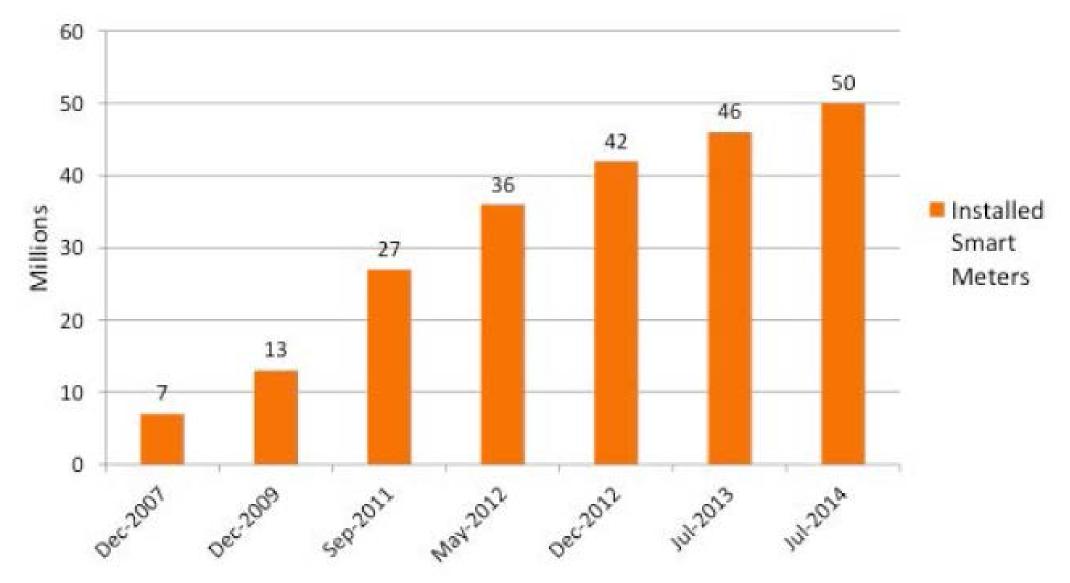
ACEEE, a non-profit advocacy group

"... Americans could cut their electricity consumption by 12 percent and save at least \$35 billion over the next 20 years"

ACEEE, a non-profit advocacy group



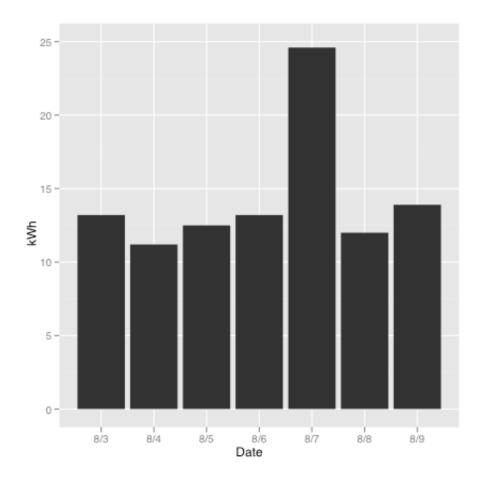
Installed Smart Meters

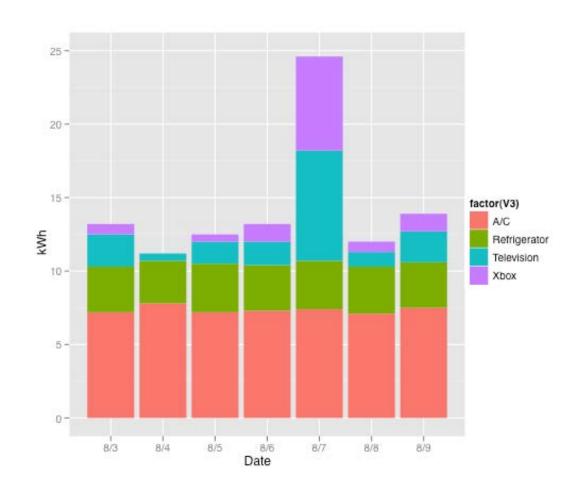


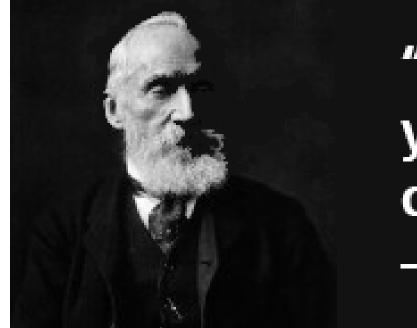
GO BEYOND SMART METERS

- Give customers breakdown of consumption

Energy Disaggregation



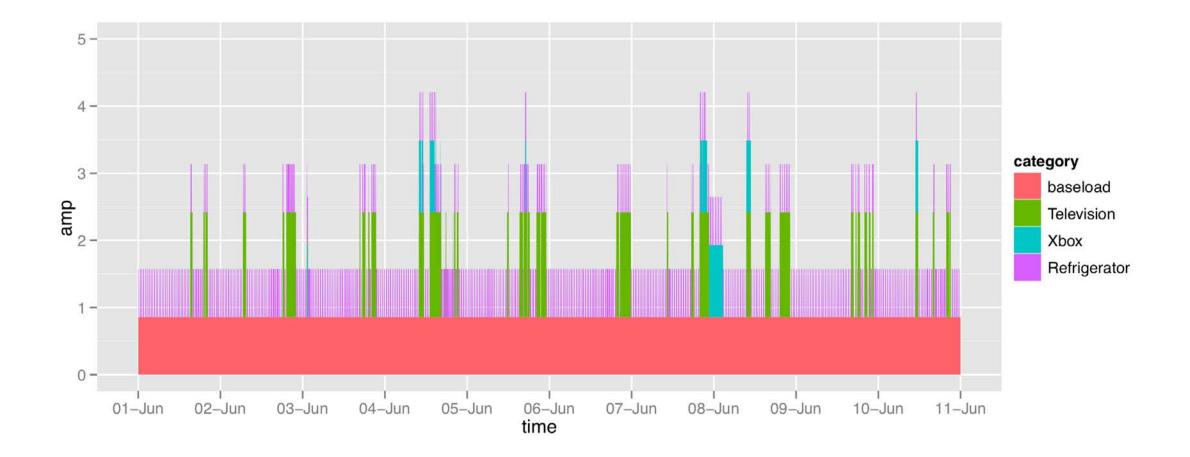




"to measure is to know – if you cannot measure it, you cannot improve it" – Lord Kelvin

http://blog.lr.org/wp-content/uploads/2013/08/LordKelvin.jpg

ENERGY DISAGGREGATION



SOLUTION

- -Install a meter on every appliance
 - Too intrusive
 - Too expensive

-Non-intrusive load monitoring (NILM) [George Hart, 1984]

• Figure out appliance usage from the whole house measurement

PROBLEM STATEMENT

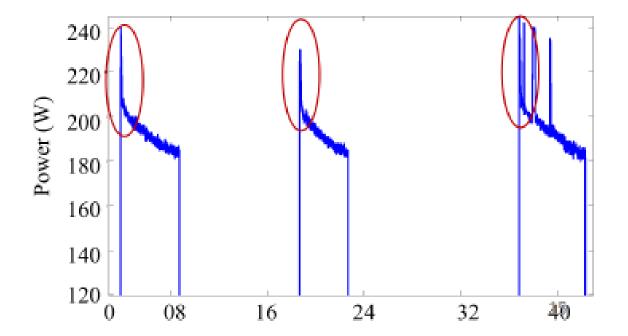
- Input
 - $Y = \langle y_1, y_2, \dots, y_T \rangle$, a sequence of aggregated power consumption
 - M, the number of appliances

- Output

- $S_1 = \langle s_1, s_2, \dots, s_T \rangle$, a sequence of consumption for Appliance 1
- $S_2 = \langle s_1, s_2, \dots, s_T \rangle$, a sequence of consumption for Appliance 2 ...
- $S_M = \langle s_1, s_2, \dots, s_T \rangle$, a sequence of consumption for Appliance M

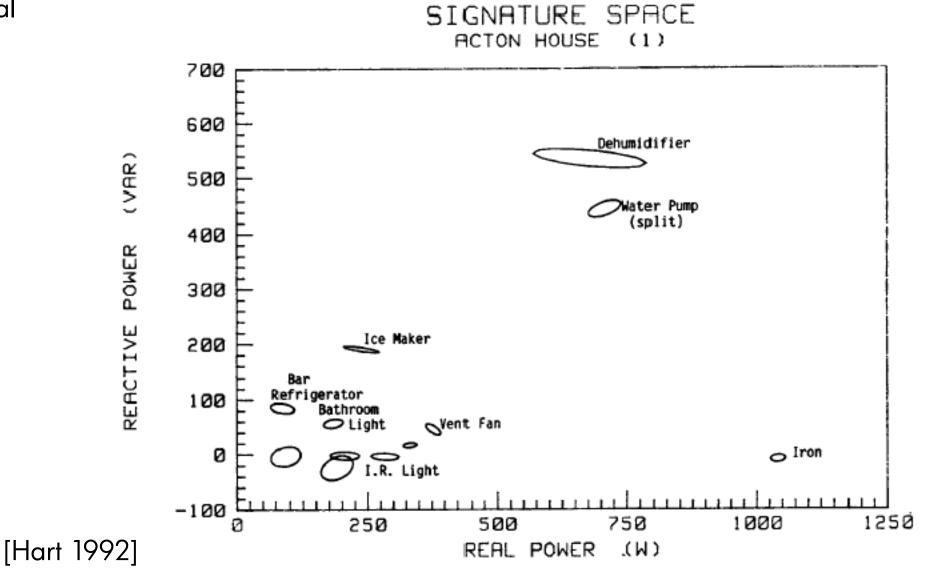
FEATURES

- Sampling frequency
 - Low (minutes to hours)
 - Medium (~ 1Hz)
 - High (in kHz)
- Stable state features
- Transient features
 - \bullet Require special HW
- Real and reactive power
- Non-power features
 - Time of day
 - Day of week
 - Weather
 - Sensors
 - State of other appliances



EVENT IDENTIFICATION

- Compute delta in real and reactive power



APPLIANCE STATE MACHINES

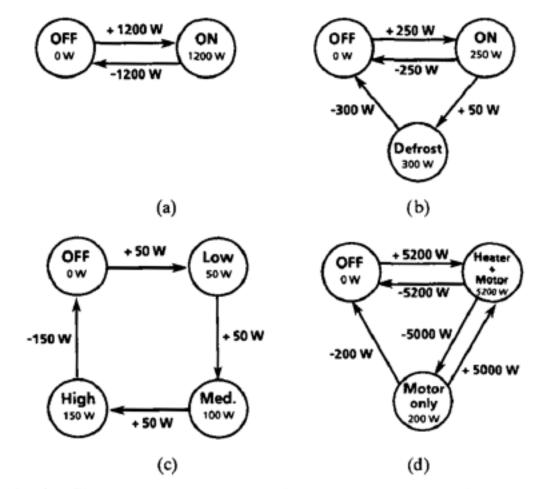
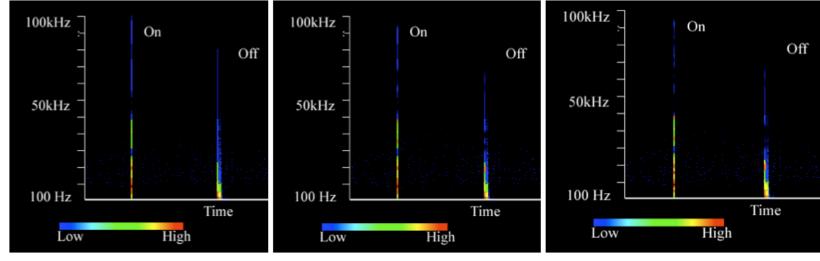


Fig. 4. Finite-state appliance models: (a) generic 1200 W two-state appliance, e.g., toaster; (b) refrigerator with defrost state; (c) "three-Way" lamp; (d) clothes dryer.

[Hart 1992]

SUPERVISED APPROACHES

- High frequency samples (100KHz)
- Labelled event data
- Train a classifier (e.g. SVM)



S.N. Patel et al. (2007)

DRAWBACKS OF EVENT-BASED METHODS

- -Require labelled data
- -Events considered in isolation
- -Most require high frequency data

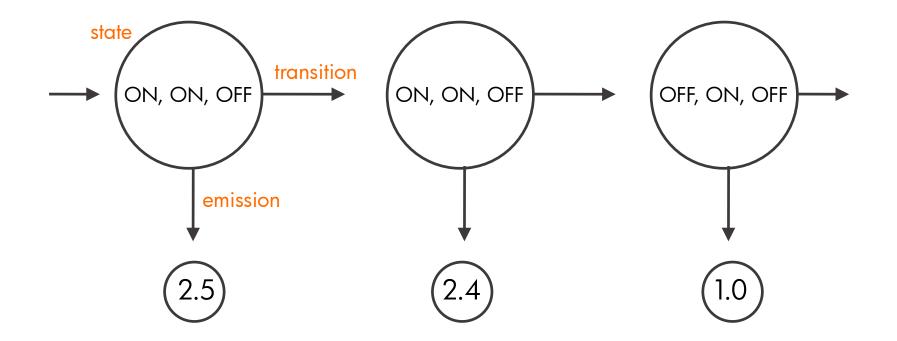
HMM-BASED MODELS

- General algorithm outline

- 1. Define a model
- 2. Learn the parameters in the model from data
- 3. Make predictions (Inference)

HMM

Time	1	2	3	4	5	6	7	8	•••
readings	2.5	2.4	1.0	1.1	1.7	1.6	0.8	0.7	
А	1.4	1.5	0	0	0	0	0	0	
В	1.1	0.9	1.0	1.1	1.0	0.9	0	0	
С	0	0	0	0	0.7	0.8	0.8	0.7	

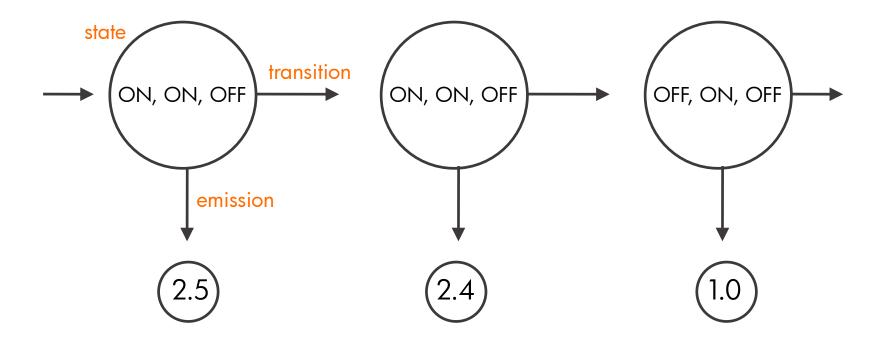


- Transition probability

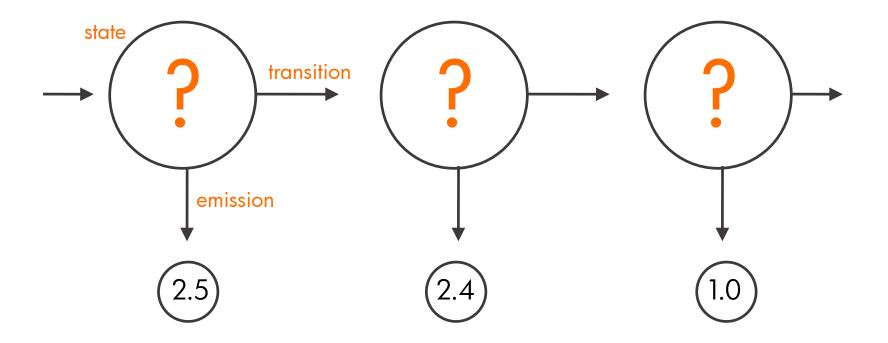
$$Pr(s_{t+1} = i | s_t = j) = \pi_{ij}$$

- Emission probability

 $Pr(y_t = v | s_t = i) \sim Normal(w_i, e)$, where e is the noise variance



- S, the sequence of the internal states, is not observable



- Transition probability

$$Pr(s_{t+1} = i | s_t = j) = \pi_{ij}$$

- Emission probability

 $Pr(y_t = v | s_t = i) \sim Normal(w_i, e)$, where e is the noise variance

- Let $\theta = {\pi_{ij}} U {w_i} U {e}$, the set of the parameters in HMM
- If both S and Y are observable, we can find the parameters θ by Maximum Likelihood (ML)
- But... S is unknown
- If Y and $\boldsymbol{\theta}$ are known, we can perform inference to compute S
- Chicken and egg problem!
- Expectation Maximization (EM)

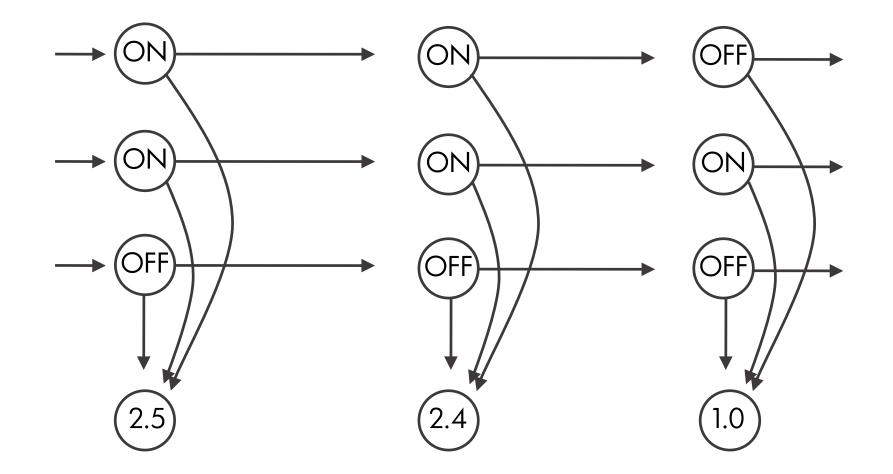
- The number of states: 2^{M}
- The number of parameters: $2^{M} + 2^{2M}$
 - 2^M emission-parameters
 - + 2^{2M} transition-parameters
- Exponential increase with number of appliances
- That's too many parameters!

FACTORIAL HIDDEN MARKOV MODEL

- The number of states: 2M
- The number of parameters: 6M
 - 2M emission-parameters
 - 4M transition-parameters
- Much better!

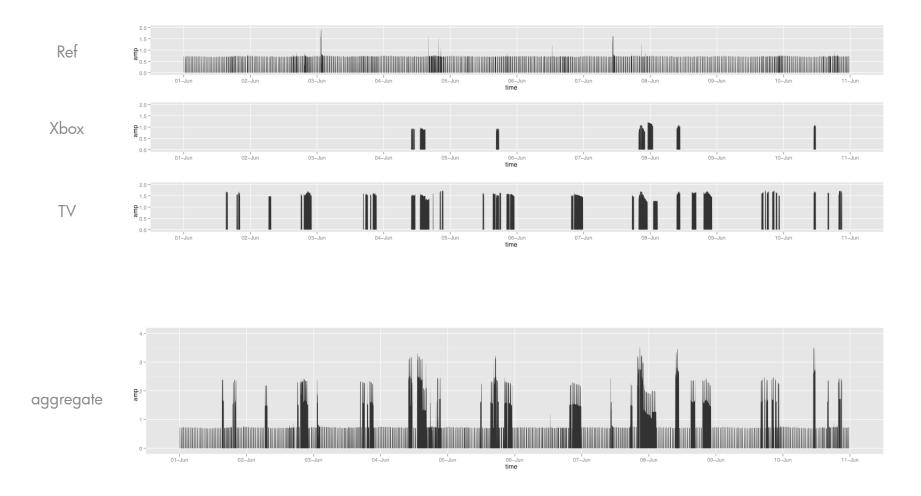
FACTORIAL HIDDEN MARKOV MODEL

- Assumption: Appliances are used independently
- The observation is a linear combination of the emissions of the markov chains

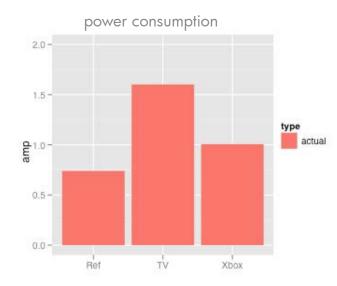


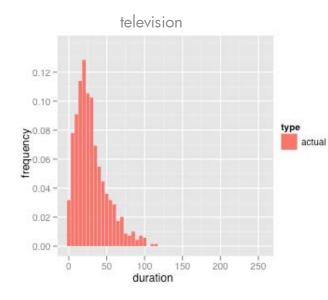
EXAMPLE APPLIANCE DATA

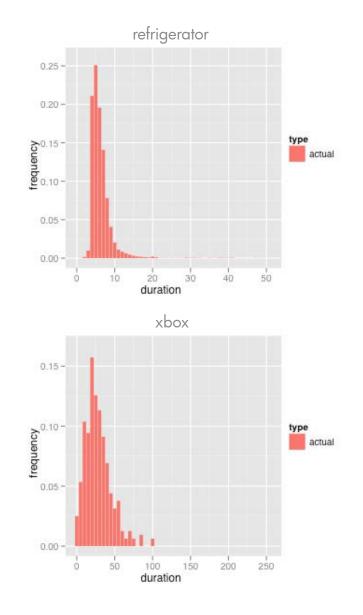
– 3 appliances: Refrigerator, Xbox, TV

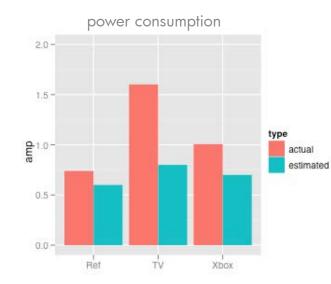


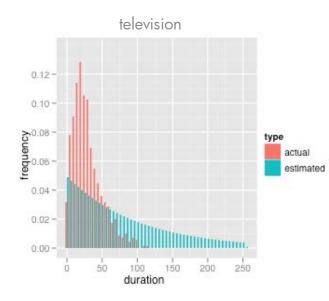
APPLIANCE DISTRIBUTIONS

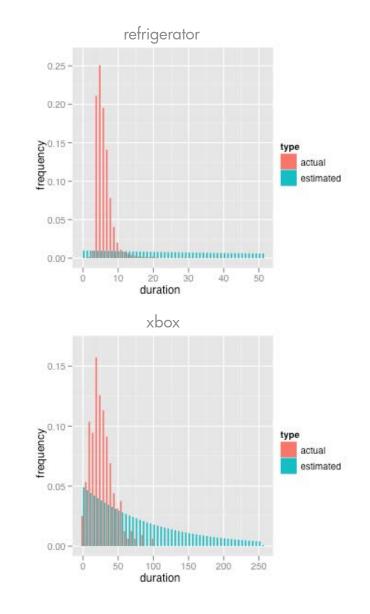


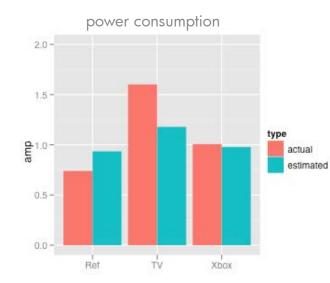


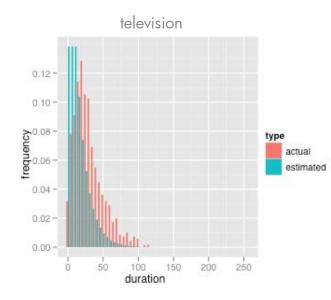


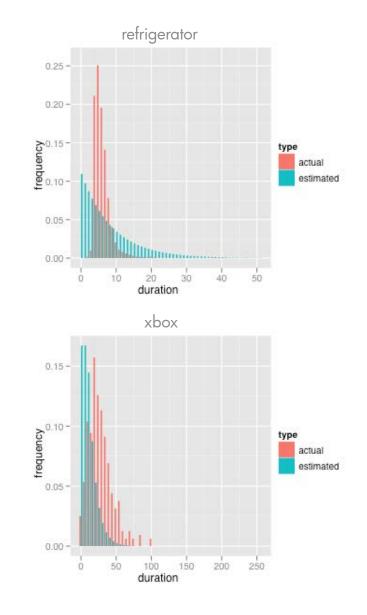


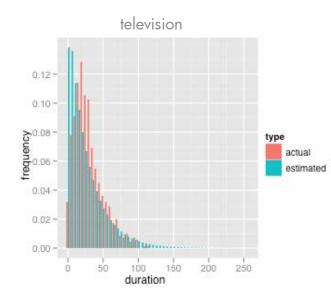


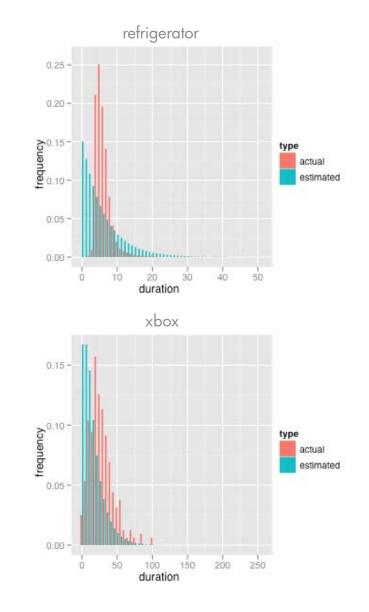


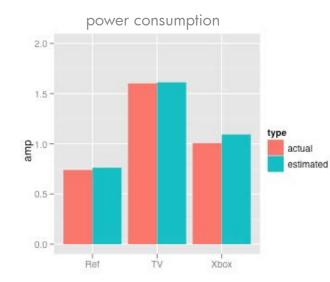


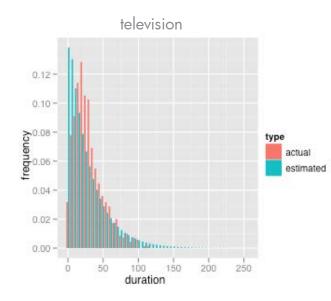


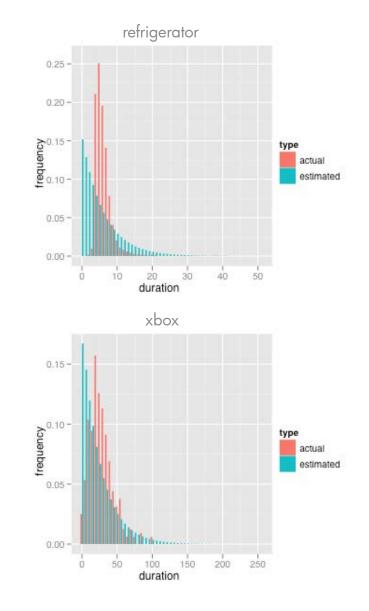






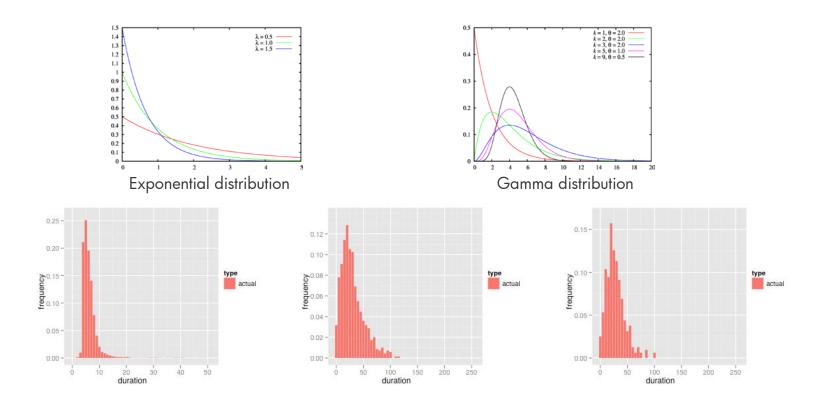






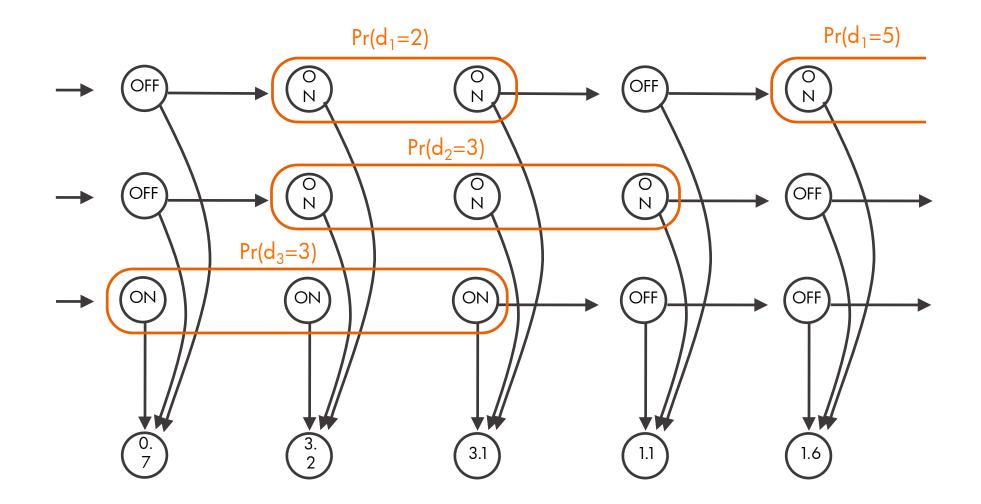
CHALLENGE: STATE-DURATION DISTRIBUTIONS

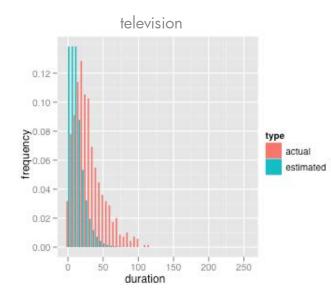
- In the family of Hidden Markov Model, the state-durations have **exponential distributions**
- But, the state-durations for appliances follow **gamma distributions**

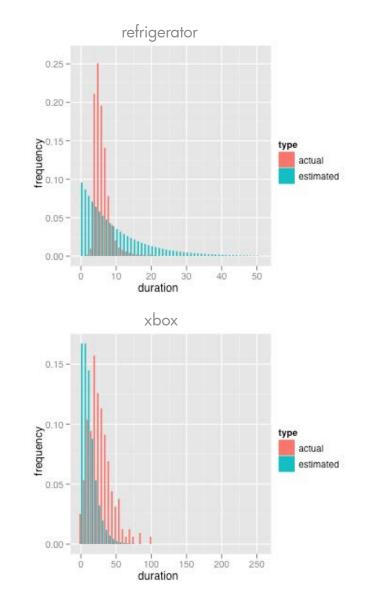


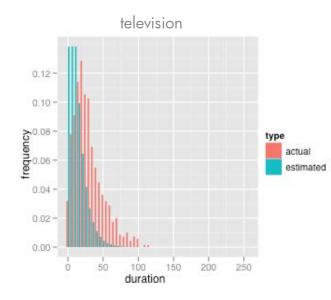
images from http://en.wikipedia.org/

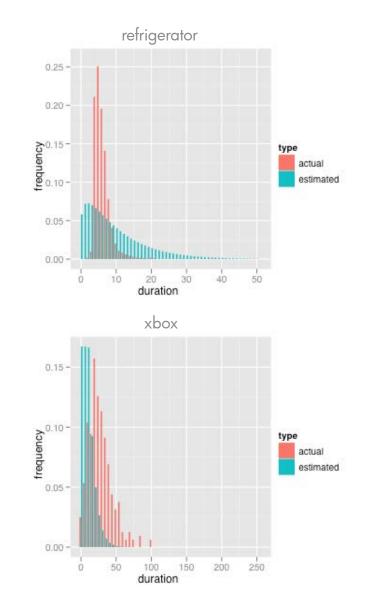
FACTORIAL HIDDEN SEMI-MARKOV MODEL

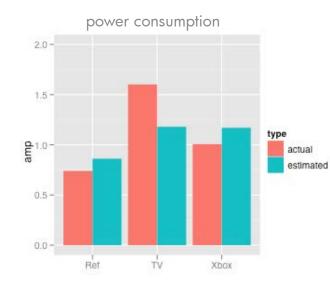


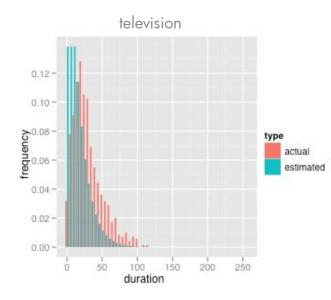


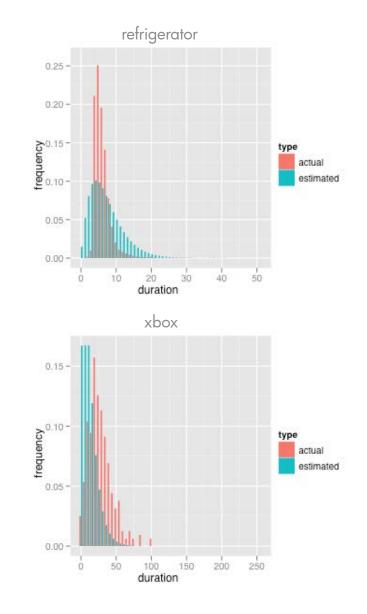


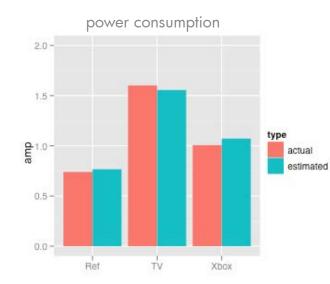


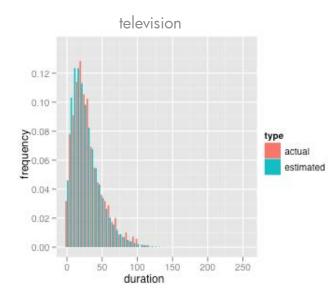


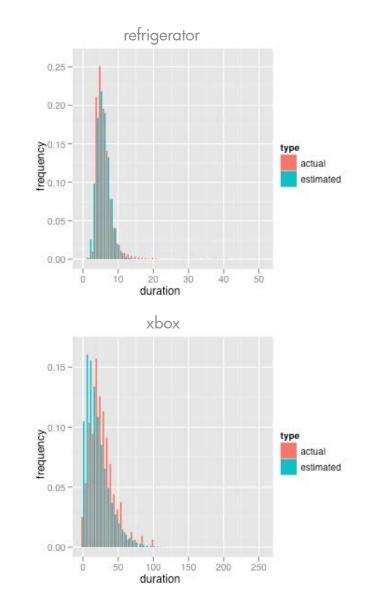


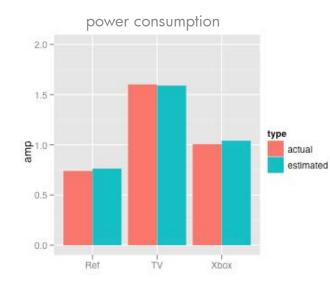


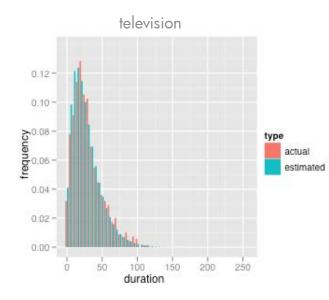


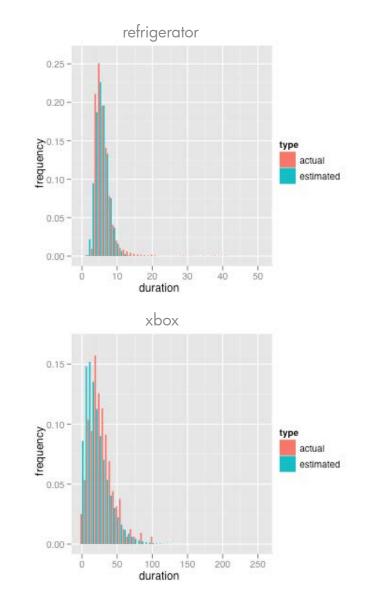




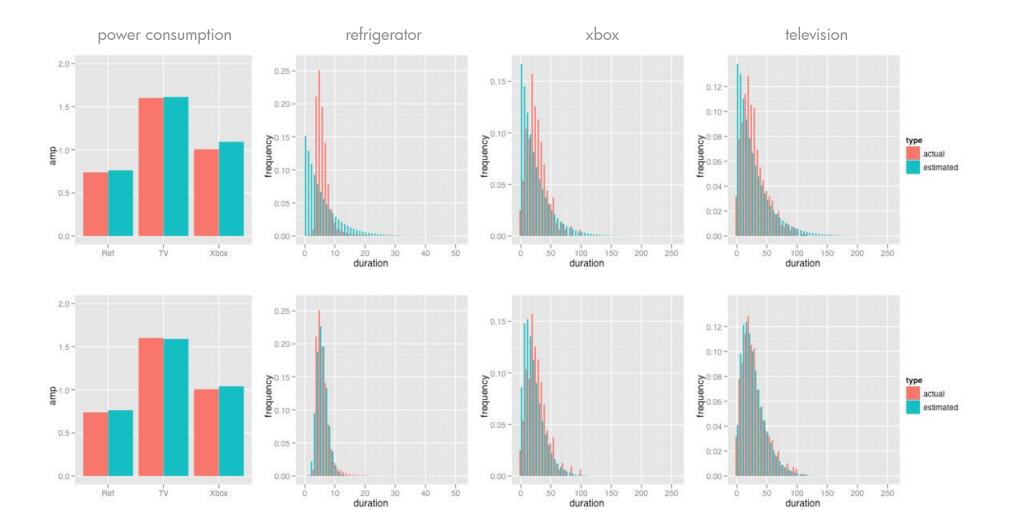








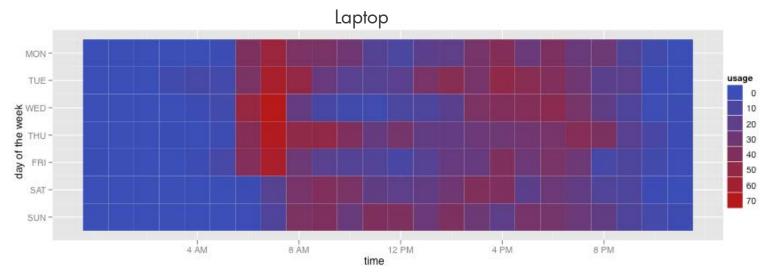
FHMM vs. FHSMM

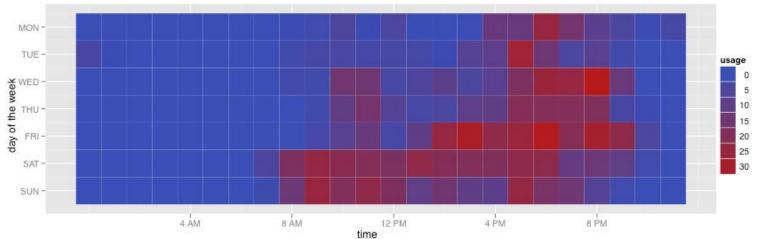


CHALLENGE: MODELING DEPENDENCIES

- There are many factors which affect the usage of appliances
- There can be additional contextual features
- Example
 - \bullet Weather (e.g. heater, A/C)
 - Day of the week (e.g. more TV on the weekends)
 - Time of day (e.g. more Xbox in the afternoon)
 - Seasons (e.g. more laundry in summer)
 - User's schedule (e.g. more laptop use in early morning)
 - Other appliances (e.g. TV is on when Xbox is in use)

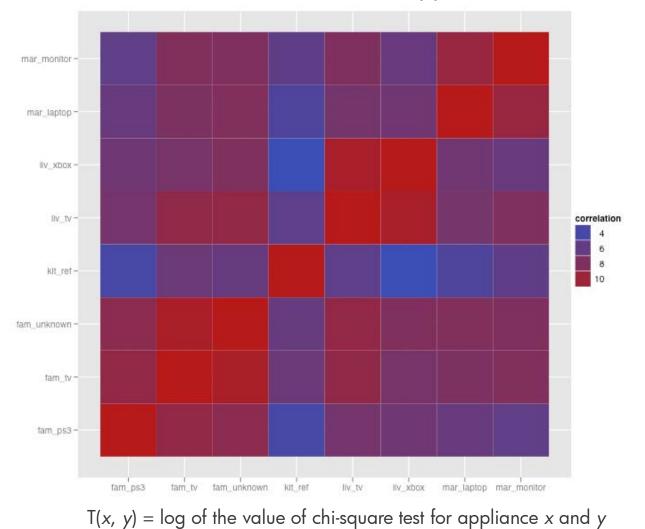
DEPENDENCY 1. TIME AND DAY OF THE WEEK





DEPENDENCY 2. OTHER APPLIANCES

Correlations between appliances



CONDITIONAL FACTORIAL HIDDEN MARKOV MODEL

– In FHMM, the transition probability is constant

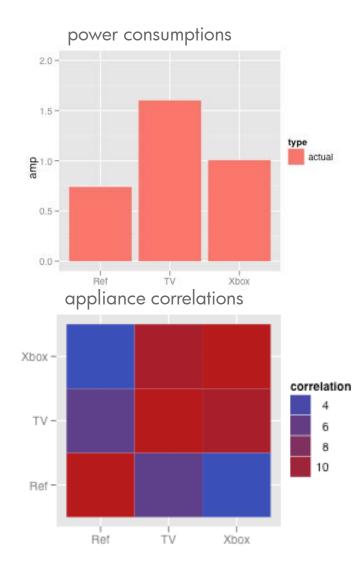
$$Pr(X_{t+1} = q | X_t = p) = \pi_{pq}$$

- In CFHMM, the transition probability depends on several conditions, and it is computed by assuming each condition is independent (Naïve Bayes assumption)

$$Pr(X_{t+1} = q | X_t = p, C_1 = c_{1t}, C_2 = c_{2t}, \dots, C_k = c_{kt}) = \frac{\pi_{pq}}{Z} \prod_{i=1}^k Pr(C_i = c_{it} | X_{t+1} = q)$$

where Z is the normalization factor

APPLIANCE STATISTICS



refrigerator MON -TUE usage * WED -0.35 0.40 0.45 0.50 0.55 day of the v SAT -SUN-12 PM 8 ÅM 4 AM 4 PM 8 PM xbox MON -TUE usage 0.00 day of the week LHA - LHA - LHA 0.05 0.10 0.15 0.20 0.25 SAT -0.30 SUN-8 PM 4 AM 8 AM 12 PM 4 PM television time MON -TUE usage 0.0 * WED-0.1 wee 0.2 0.3 0.4 0.5 0.6 n ant for the w SAT -SUN-

12 PM

time

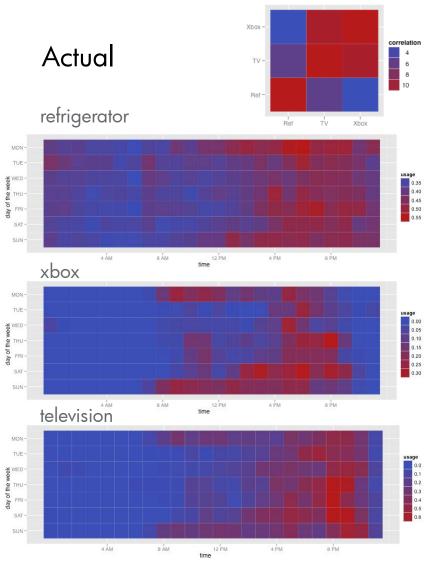
4 PM

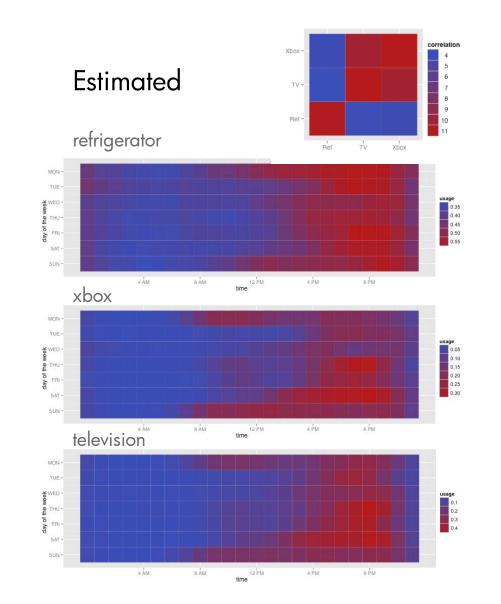
8 PM

4 AM

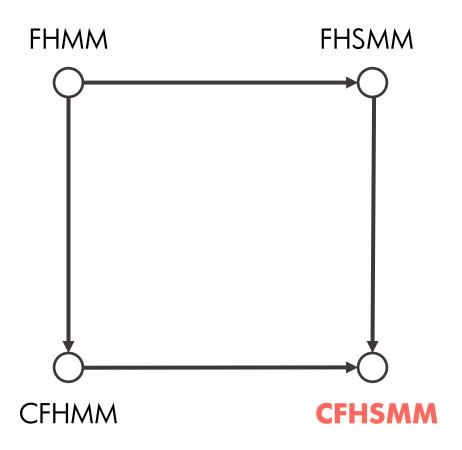
8 AM

CFHMM – RESULT





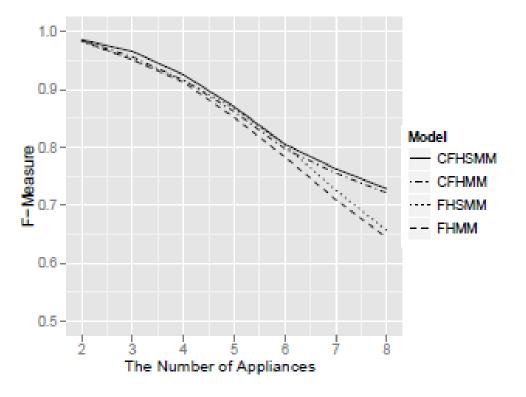
CONDITIONAL FACTORIAL HIDDEN SEMI-MARKOV MODEL



RESULTS

Home ID	Num. of Appliances	FHMM	CFHSMM
Home 1	4	0.983	0.998
Home 2	6	0.899	0.930
Home 3	6	0.859	0.881
Home 4	7	0.625	0.693
Home 5	8	0.713	0.781
Home 6	8	0.641	0.722
Home 7	10	0.796	0.874

Table 4: The evaluations on several homes.



Acknowledgements

Martin Arlitt, Cullen Bash, Gowtham Bellala, Hyungsul Kim, Geoff Lyon, Martha Lyons, Chandrakant Patel

References

• **[SIAM 2011]** Hyungsul Kim, Manish Marwah, Martin Arlitt, Geoff Lyon and Jiawei Han, "Unsupervised Disaggregation of Low Frequency Power Measurements", SIAM International Conference on Data Mining (SDM 11), Mesa, Arizona, April 28-30, 2011.

• [BuildSys 2011] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, Cullen Bash, "Towards an understanding of campus-scale power consumption." In ACM BuildSys, November 1, 2011, Seattle, WA.

• [BuildSys 2012] G. Bellala, M. Marwah, A. Shah, M. Arlitt, C. Bash, "A Finite State Machine-based Characterization of Building Entities for Monitoring and Control", Proceedings of ACM Workshop on Building Systems (Buildsys), Nov 2012.

[KDD 2012] Gowtham Bellala, Manish Marwah, Martin Arlitt, Geoff Lyon, Cullen Bash, "Following the Electrons: Methods for Power Management in Commercial Buildings." In KDD, August 12-16, 2012, Beijing, China.
[Hart 1992] Hart, G.W., ``Nonintrusive Appliance Load Monitoring," Proceedings of the IEEE, December 1992,

pp. 1870-1891.