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Building Energy Use

http://energy.gov/sites/prod/files/ReportOnTheFirstQTR.pdf
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Building Energy Management
Buildings consume a lot of energy
• Commercial buildings 

• 1.3 trillion kWh electricity annually  1/3 of 
total US electricity generation

• Annual energy costs > $100 billion

Poorly maintained, degraded, 
and improperly controlled 
equipment wastes 15-30%
energy in commercial buildings



Outline

• Meter placement
• Anomaly detection
• Occupancy Modeling
• Energy Disaggregation
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Where should meters 
be installed?

How can we detect anomalous
power consumption behavior?

How can we detect 
degraded
performance of 
equipment/devices 
in a buildings?

AbnormalNormal Abnormal

Ref.: KDD 2012, ACM BuildSys 2011, 2012

How can we cheaply 
measure building 
occupancy?
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Test Bed

• HP Labs, Palo Alto, CA campus 
• Three buildings instrumented with ~40 power meters

Electrical  Infrastructure Topology
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Campus Power Use

• Power consumption characteristics of Buildings 1, 2 and 3

• Building 3 has a 135kW PV array
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Building Power Instrumentation

Where do I place the meters?
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Building Power Instrumentation 

Motivation: Obtain per-panel power consumption

Challenge: Large number of panels, each power meter: $1K-
$3K

Goal: Select optimal locations for meter deployment

Approach: Formulate as an optimization problem over panel 
hierarchy (a tree structure)
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Panel Topology & Problem Formulation

Panel feeding load(s)

Panel feeding multiple sub-panels

:  Set of all possible locations         

: Set of all leaf locations 

&

Panel Topology
Problem Formulation

: Selected locations

Select k meters:

: Set of meters
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Greedy, Near-optimal Solution
• Optimal solution is NP-hard

• Greedy optimization:  Select panels sequentially

• We show objective function is submodular [KDD 2012]

• Thus, solution is guaranteed to be near-optimal [Krause et 
al. 2006]

~63%
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Experimental Results
Panels Selected for k = 12
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Experiment Results

Number of meters installed (k)
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Prediction ability of the panels selected using the proposed approach



Building Power Management

Meter Anomaly Detection
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Anomaly Detection

Motivation: 
• Abnormal power usage may indicate:

- wasted power
- Failed or faulty equipment

Challenge:   Obtaining labeled data is expensive
• requires a lot of  manual effort

Goal:  Systematically detect abnormal power usage

Approach:  Use an unsupervised approach 



16

Algorithm
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Anomaly Examples
Power Saving Opportunities

Load: Air Handling Units in Building 2
Anomaly:

• Abnormal time usage;  Potential savings  ~450 
kWh

Load: Overhead Lighting in Building 1
Anomalies: 

• Abnormal low usage (holiday)
• Abnormal time usage;  Potential savings  ~180 

kWh



Building Power Management

Occupancy Modelling
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Building Occupancy Estimation
For optimal resource provisioning 

• Motivation: Save energy via occupancy-based 
lighting/air conditioning (HVAC) scheduling

• Challenge: Fine-grained occupancy information 
is not available, and requires additional sensors

– Expensive
– Intrusive

• Goal: Accurately estimate occupancy of a zone 
using readily available data

• Approach
– Use L2 port-level network statistics as a proxy
– Semi-supervised method with minimal training 
data

Methodology[2]

[2] Bellala et.al., “Towards an understanding of campus-scale power consumption,” ACM BuildSys 2011.
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etc

Two stage Semi-supervised Approach 
– Can efficiently incorporate external parameters
– Requires less training data
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Experimental Results

Cube/Office-level Occupancy Estimation Zone-level Occupancy Estimation

• Occupancy is estimated at cube level (accuracy varied from 85% to 95%)

• This information is aggregated at zone level (8-12 cubes)

• Zone level estimated occupancy is then used to schedule lighting for each zone

• Estimated energy savings using this approach ~ 9.5% 

Unsupervised Semi-supervised



Building Power Management

Energy Disaggregation

→
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Residential Energy Consumption

“… the typical American household … is also likely to use 20 percent to 30 percent more energy
than necessary…”

ACEEE, a non-profit advocacy group 

“… Americans could cut their electricity consumption by 12 percent and save at least $35 billion over 
the next 20 years”

ACEEE, a non-profit advocacy group
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http://www.withoutagym.net/wp-content/uploads/2014/02/LOWEST-GROCERY-BILL-EVER1.jpg
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http://thumbs.dreamstime.com/z/electricity-bill-1565154.jpg
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http://www.edisonfoundation.net/



GO BEYOND SMART METERS
– Give customers breakdown of consumption

Energy Disaggregation



http://blog.lr.org/wp-content/uploads/2013/08/LordKelvin.jpg



ENERGY DISAGGREGATION



SOLUTION

–Install a meter on every appliance
• Too intrusive
• Too expensive

–Non-intrusive load monitoring (NILM) [George Hart, 1984]
• Figure out appliance usage from the whole house measurement



PROBLEM STATEMENT

– Input
• Y = <y1, y2, …, yT>, a sequence of aggregated power consumption
• M, the number of appliances

– Output
• S1= <s1, s2, …, sT>, a sequence of consumption for Appliance 1
• S2= <s1, s2, …, sT>, a sequence of consumption for Appliance 2

…
• SM= <s1, s2, …, sT>, a sequence of consumption for Appliance M



FEATURES
– Sampling frequency

• Low (minutes to hours)
• Medium (~ 1Hz)
• High (in kHz)

– Stable state features 

– Transient features
• Require special HW

– Real and reactive power

– Non-power features
• Time of day
• Day of week
• Weather
• Sensors
• State of other appliances



EVENT IDENTIFICATION
- Compute delta in real 
and reactive power 

[Hart 1992]



APPLIANCE STATE MACHINES

[Hart 1992]



SUPERVISED APPROACHES
– High frequency samples (100KHz)

– Labelled event data

– Train a classifier (e.g. SVM)

S.N. Patel et al. (2007)



DRAWBACKS OF EVENT-BASED METHODS

–Require labelled data

–Events considered in isolation 

–Most require high frequency data



HMM-BASED MODELS
– General algorithm outline

– 1. Define a model

– 2. Learn the parameters in the model from data

– 3. Make predictions (Inference)



HMM

Time 1 2 3 4 5 6 7 8 …
readings 2.5 2.4 1.0 1.1 1.7 1.6 0.8 0.7 …

A 1.4 1.5 0 0 0 0 0 0 …
B 1.1 0.9 1.0 1.1 1.0 0.9 0 0 …
C 0 0 0 0 0.7 0.8 0.8 0.7 …

2.5 2.4 1.0

ON, ON, OFF ON, ON, OFF OFF, ON, OFF
transition

state

emission



HIDDEN MARKOV MODEL
– Transition probability

Pr(st+1 = i  | st = j ) = πij

– Emission probability
Pr(yt = v | st = i) ~ Normal(wi, e), where e is the noise variance

2.5 2.4 1.0

ON, ON, OFF ON, ON, OFF OFF, ON, OFF
transition

state

emission



HIDDEN MARKOV MODEL
– S, the sequence of the internal states, is not observable

2.5 2.4 1.0

ON, ON, OFF ON, ON, OFF OFF, ON, OFF
transition

state

emission

? ? ?



HIDDEN MARKOV MODEL
– Transition probability

Pr(st+1 = i  | st = j ) = πij

– Emission probability
Pr(yt = v | st = i) ~ Normal(wi, e), where e is the noise variance

– Let θ = {πij} U {wi} U {e}, the set of the parameters in HMM

– If both S and Y are observable, we can find the parameters θ by Maximum Likelihood (ML)

– But…  S is unknown

– If Y and θ are known, we can perform inference to compute S

– Chicken and egg problem!

– Expectation Maximization (EM)



HIDDEN MARKOV MODEL
– The number of states: 2M

– The number of parameters: 2M + 22M

• 2M emission-parameters
• 22M transition-parameters 

– Exponential increase with number of appliances

– That’s too many parameters!



FACTORIAL HIDDEN MARKOV MODEL
– The number of states: 2M

– The number of parameters: 6M
• 2M emission-parameters
• 4M transition-parameters

– Much better!



FACTORIAL HIDDEN MARKOV MODEL
– Assumption: Appliances are used independently

– The observation is a linear combination of the emissions of the markov chains

2.5 2.4 1.0

OFF OFF OFF

ON ON ON

ON ON OFF



EXAMPLE APPLIANCE DATA
– 3 appliances: Refrigerator, Xbox, TV

Ref

Xbox

TV

aggregate



APPLIANCE DISTRIBUTIONS
power consumption refrigerator

television xbox



FHMM – EM ITERATION 0
power consumption refrigerator

television xbox



FHMM – EM ITERATION 4
power consumption refrigerator

television xbox



FHMM – EM ITERATION 10
power consumption refrigerator

television xbox



FHMM – EM ITERATION 20
power consumption refrigerator

television xbox



CHALLENGE:
STATE-DURATION DISTRIBUTIONS
– In the family of Hidden Markov Model, the state-durations have exponential distributions

– But, the state-durations for appliances follow gamma distributions

Exponential distribution Gamma distribution

images from http://en.wikipedia.org/



FACTORIAL HIDDEN SEMI-MARKOV MODEL
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FHSMM – EM ITERATION 0
power consumption refrigerator

television xbox



FHSMM – EM ITERATION 1
power consumption refrigerator

television xbox



FHSMM – EM ITERATION 5
power consumption refrigerator

television xbox



FHSMM – EM ITERATION 10
power consumption refrigerator

television xbox



FHSMM – EM ITERATION 20
power consumption refrigerator

television xbox



FHMM vs. FHSMM

power consumption refrigerator televisionxbox



CHALLENGE:
MODELING DEPENDENCIES
– There are many factors which affect the usage of appliances

– There can be additional contextual features

– Example
• Weather (e.g. heater, A/C)
• Day of the week (e.g. more TV on the weekends)
• Time of day (e.g. more Xbox in the afternoon)
• Seasons (e.g. more laundry in summer)
• User’s schedule (e.g. more laptop use in early morning)
• Other appliances (e.g. TV is on when Xbox is in use)



DEPENDENCY 1.
TIME AND DAY OF THE WEEK

Laptop

Xbox



DEPENDENCY 2.
OTHER APPLIANCES

T(x, y) = log of the value of chi-square test for appliance x and y

Correlations between appliances



CONDITIONAL FACTORIAL HIDDEN MARKOV MODEL

– In FHMM, the transition probability is constant

– In CFHMM, the transition probability depends on several conditions, and it is computed by 
assuming each condition is independent (Naïve Bayes assumption)

where Z is the normalization factor



APPLIANCE STATISTICS
power consumptions

appliance correlations

refrigerator

xbox

television



CFHMM – RESULT 
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CONDITIONAL FACTORIAL HIDDEN SEMI-MARKOV MODEL

FHMM FHSMM

CFHMM CFHSMM



RESULTS
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