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Commercial buildings are significant consumers of electricity. The first step towards better energy man-
agement in commercial buildings is monitoring consumption. However, instrumenting every electrical panel
in a large commercial building is expensive and unnecessary. In this paper, we propose a greedy meter (sen-
sor) placement algorithm based on maximization of information gain subject to a cost constraint. The algo-
rithm provides a near-optimal solution guarantee, and our empirical results demonstrate a 15% improve-
ment in prediction power over conventional methods. Furthermore, to identify power saving opportunities,
we use an unsupervised anomaly detection technique based on a low-dimensional embedding. Further, to
enable a building manager to effectively plan for demand response programs, we evaluate several solutions
for fine-grained, short-term load forecasting. Our investigation reveals an interesting relation between time-
series variability and the optimal forecast method, with support vector regression and an Ensemble model
being the best method for time-series with high variability, while a simple method such as a linear regression
is equally effective on time-series with low variability. Finally, to better manage resources such as lighting
and HVAC, we propose a semi-supervised approach combining hidden Markov models (HMM) and a stan-
dard classifier to model occupancy based on readily available port-level network statistics. We show that the
proposed two step approach simplifies the occupancy model while achieving good accuracy. The experimen-
tal results demonstrate an average occupancy estimation error of 9.3% with a potential reduction of 9.5% in
lighting load using our occupancy models.
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1. INTRODUCTION
In the United States alone, there are an estimated five million commercial buildings.
In 2015, these building consumed roughly one third of the electricity generated in the
country. The energy costs for commercial buildings exceeds $100 billion annually. Due
to recent economic turmoil, and increased awareness of environmental concerns (e.g.,
global climate change), many companies want to understand how resources such as
electricity are used in their buildings, so that steps can be taken to reduce consump-
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tion. Often, they turn to consulting firms for services like building energy efficiency
analyses. The work described in this paper addresses shortcomings of existing anal-
yses of this sort. Preliminary versions of this work appeared in [Bellala et al. 2011;
2012]. In this paper, we combine and extend the results of our earlier work.

A first challenge for improving power use in a building is understanding how much
power each appliance or device in the building uses. One option is to install power
meters on all electrical panels, to collect usage data near the consumers, and get a
(approximate) per-appliance breakdown of power use. The main disadvantage of this
approach is the cost to buy and install the meters. For companies that own a lot of
buildings (e.g., Walmart has more than 10,000 stores globally), this cost becomes pro-
hibitively expensive. Thus, one research question we address is where to place a lim-
ited set of meters in a building, while minimizing the information loss. We propose an
efficient greedy algorithm that provides a near-optimal solution.

A second challenge we investigate is how to systematically monitor building energy
use and automatically detect problems that arise over time. A limitation of manual
consulting services is that they can only identify issues that are occurring at the time
the analysis is conducted, and typically only a limited number of panels are mon-
itored, identified by an expert based on the likelihood of energy savings. Having a
consultant repeat the study on a regular (e.g., daily) basis is not cost effective, so an
automated technique is highly desired. We present results from applying our unsu-
pervised anomaly (fault) detection and ranking methods for monitoring tens of meters
over a six month period.

A third challenge relates to providing fine-grained, short-term consumption fore-
casts. Accurate short-term forecasts enable the implementation of demand response
programs in concert with a utility provider. Utilities are interested in lowering peak
power usage, since that lowers their infrastructure costs (typically based on the peak
load). Utilities, through demand response programs, provide incentives to customers
for reducing their consumption during peak load periods (as specified by the utility).
Knowledge of expected power consumption in different parts of a campus or build-
ing allows a building operations manager to effectively plan for such an event. We
evaluate several methods for fine-grained short-term load forecasting, and discover
that support vector regression and an ensemble model work best overall, while sim-
ple methods such as linear regression and gradient boosted machines also tend to be
effective on time-series with low variability.

Lastly, consulting studies will typically recommend static solutions to reduce build-
ing energy use. For example, turn on all lights only during work hours (e.g., 8am to
6pm), and turn most off otherwise. While such techniques do help reduce power use
in a building, further savings are possible. One approach is to only turn on lights (or
HVAC systems) in areas where people are currently in, and to turn them off when
the people leave. To facilitate such dynamic resource management, we developed a
semi-supervised method for occupancy modeling.

Our group has instrumented three large commercial buildings on the Hewlett
Packard Labs campus in Palo Alto, CA to enable an understanding of how, when and
where power is consumed in a commercial campus. This instrumentation provides ex-
tensive data on the campus power use, which establishes the “ground truth” against
which we evaluate our power management methods.

The paper makes the following contributions.

— we propose a greedy algorithm for determining meter placement in a building’s elec-
trical infrastructure, to maximize mutual information while minimizing the cost of
metering. Besides being computationally efficient, we also show that the proposed
greedy algorithm guarantees a near-optimal solution. In particular, we show that
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mutual information becomes submodular under a special graphical structure that
arises in distribution networks such as power, water and gas.

— we propose an unsupervised technique to identify anomalous usage periods in power
consumption time series. From over six months of data from a large test bed (three
buildings totaling 300,000 sq. ft.), we identify several power saving opportunities.
For some of the observed anomalies, potential energy savings ranged from 22% to
28% per anomaly.

— we evaluate several models for short-term power consumption forecast on 12 months
of data and several power meters. Our investigation reveals an interesting relation
between time-series variability and optimal forecast method, with support vector re-
gression and an Ensemble model being the best method for time-series with high
variability, while a simple method such as linear regression is equally effective for
time-series with low variability.

— we propose a novel semi-supervised approach combining a hidden Markov model
(HMM) with a classifier to model human occupancy levels in our test bed. Such mod-
els can be used for more efficient management policies for lighting and HVAC. Based
on our occupancy models, we estimate that modifying the lighting schedule can save
an additional 9.5% of lighting power beyond the static schedule.

The remainder of the paper is organized as follows. Section 2 highlights related
work. Section 3 provides an overview of our campus, the power delivery and measure-
ment infrastructure, and the campus power usage characteristics. Section 4 introduces
our overall framework. Sections 4.1, 4.2, 4.3 and 4.4 describe our meter placement,
anomaly detection, short-term load forecasting and occupancy modeling methods, re-
spectively. Section 5 evaluates our methods. Section 6 summarizes our work and future
directions.

2. PRIOR AND RELATED WORK
A recent study by the United States Energy Information Administration [USEIA 2015]
estimated commercial buildings to consume roughly one third of the total electricity
generated in the US. These estimates motivated research to improve building energy
efficiency. A large body of recent work addressed different aspects of building energy
management in commercial buildings such as diagnosis and anomaly detection [Wang
et al. 2016; Teraoko et al. 2014], building energy modeling [Yin et al. 2015; Masuda
and Clarigde 2014], control of HVAC and lighting [Brooks et al. 2015; Haq et al. 2014],
and building occupancy modeling [Balaji et al. 2013; Ghai et al. 2012]. Our work ap-
proaches these problems from a data mining perspective, and proposes novel methods
in some of these areas.

Meter Placement: Obtaining detailed, per device power usage information tends to
be intrusive and quite expensive, which includes both the cost of the meter and its in-
stallation (often a significant part). This raises an interesting question as to where and
how many power meters must be installed. This problem of selecting optimal locations
for meter placement can be framed as a budgeted optimization problem. It has been
well studied in the literature in different contexts, such as in the case of sensor place-
ment in a water distribution network [Leskovec et al. 2007] or observation selection in
an autonomous robotic exploration [Krause and Guestrin 2007]. Several different cri-
teria have been proposed in the literature for selecting these optimal locations [Krause
and Guestrin 2007]. The most popular among them being mutual information [Krause
et al. 2006; Krause et al. 2008]. However, as we discuss in Section 4.1, this constrained
optimization problem with mutual information as an objective function is known to be
NP-hard, and hence requires use of greedy, near-optimal strategies to solve the opti-
mization problem.
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Anomaly Detection: Examining data for anomalies is a known approach for identi-
fying abnormal system behavior. Catterson et al. [2010] used this approach to monitor
old power transformers. Their goal was to proactively search for abnormal behavior
that may indicate the transformer is about to fail. Teraoko et al. [2014] propose a
web service based fault management framework for HVAC systems and uses building
management system data to detect anomalies. Li et al. [2010] looked for anomalies in
building power consumption, by employing simple statistical tests such as the Q-test to
detect time points with abnormal power usage. On the other hand, Jakkula and Cook
[2010] demonstrate that a clustering based approach can be more efficient in identify-
ing abnormal activities in power consumption data, over such simple statistical tests.
Our work on anomaly detection is built on these observations.

Short-term Load Forecasting: Load forecasting has been studied in the litera-
ture for a long time. Many traditional approaches such as ARMA, ARIMA and linear
regression that were proposed in the statistics community have been applied for short-
term load forecast at an aggregate scale such as a Utility or regional level [Huang and
Shih 2003]. However, these methods are not powerful enough to forecast load at finer
spatial scales where the consumption patterns tend to be highly irregular.

To address this limitation, more recent work on short-term forecasting used ma-
chine learning algorithms such as support vector machines [Pai and Hong 2005;
Sapankevych and Sankar 2009], multi-layer perceptron [Hippert et al. 2001] and neu-
ral networks [An et al. 2013], and incorporated external factors such as weather to
demonstrate improved forecast accuracy over simple regression models. At the same
time, other recent studies in the context of smart grid to obtain household level short-
term load forecast have shown a fundamental limitation to the predictability of in-
dividual customers [Edwards et al. 2012; Sevlian and Rajagopal 2013; 2014]. In this
paper, we study fine-grained and short-term load forecasting in commercial buildings.

Occupancy Modeling: Occupancy information can be used directly by building
control systems to reduce the energy consumption of air conditioning, lighting, IT in-
frastructure, and other building systems [CEC 1993]. Erickson and Cerpa [2010] show
that an occupancy based HVAC control can achieve significant reductions in overall
energy consumption while conforming to the American Society of Heating, Refriger-
ating and Air-conditioning [ASHRAE 2004; 2007] comfort standards. Unfortunately,
tracking the number of people in a building is often more difficult than one might
expect. While data from badging or existing security cameras may help estimate the
total number of occupants in a commercial building, they do not provide fine-grained
(cube/zone-level) occupancy estimates required to enable fine-grained control.

Most previous work on occupancy modeling used specific sensors such as CO2 sen-
sors [Newsham and Birt 2010], PIR sensors [Agarwal et al. 2011], or a host of camera
sensor nodes [Erickson and Cerpa 2010] to estimate the number of occupants. How-
ever, these approaches require installation and maintenance of additional infrastruc-
ture, and is often not a viable solution, especially in large commercial buildings. An
alternative approach is to use proxies that can provide reasonable estimates of the oc-
cupancy information. In this context, Melfi et al. [2011] proposed the use of existing
network infrastructure to estimate occupancy. They studied the use of Dynamic Host
Control Protocol (DHCP) logs and other explicit ways such as monitoring PC activity
to estimate occupancy. Balaji et al. [2013] propose a less intrusive approach that lever-
age WiFi connectivity logs to determine occupancy. However, their zone of detection is
often large covering up to 10 HVAC zones. In this work, we use a similar less intru-
sive approach that uses wired network connections to provide fine-grained (cube-level)
occupancy information.
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Fig. 1. (a) Aerial view of the campus, showing the six main buildings, three of which were instrumented for
resource monitoring (b) Power distribution topology, the top-level distribution panels within each building
and the power meter placements.

3. CAMPUS OVERVIEW
We use our campus as a test bed to investigate the monitoring and management of
resources such as power, gas, water, and waste, with our primary focus on power. The
campus contains six main buildings with a total footprint of 700,000 sq. ft. Our efforts
are focused on three two-storey buildings, as highlighted in Figure 1(a). These three
buildings have a footprint of 300,000 sq. ft, and host about 500 occupants.

3.1. Power Distribution Topology
Figure 1(b) shows the power distribution topology for Buildings 1, 2 and 3, which are
all fed by a single utility feed (3-phase 12.5kV). An emergency generator (3-phase
480V) maintains critical loads in the event of a utility failure. Automatic transfer
switches (ATS) are used to revert from the utility to backup power. Each building has
a main distribution panel (3-phase 480V) that branches to about 10 major sub-loads
or sub-panels. Building 1 also has a secondary top-level power feed and distribution
panel. In addition, Building 3 has a 135kW photo-voltaic array on top of it, that offsets
power demand during daylight hours.
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Fig. 2. Campus power use.

3.2. Power Data Collection
We have deployed 137 power meters on our campus. These include meters for build-
ing, top-level load distribution panels in Buildings 1-3, second-tier distribution pan-
els within each building, and a few third-tier distribution panels in Building 1. The
installed electrical meters are commercial (3-phase) devices from Schneider Electric
(www.schneider-electric.com). Data is retrieved from each meter every 10 seconds us-
ing the MODBUS over Ethernet protocol. The data includes metrics such as individual
line voltage, real and apparent power, power factor, current and frequency. The data is
stored in a PI-Server from OSIsoft (www.osisoft.com).

3.3. Power Usage Characteristics
This section provides a brief summary of several properties of power use on the cam-
pus. The top plot in Figure 2 shows the aggregate power use for Buildings 1-3 over a
one week period (from March 3 through March 9, 2013). This plot reveals several key
characteristics. First, the demand has both a constant (base) and variable load com-
ponents. The base load is quite significant, at 1.6 MW. The variable component adds
another 0.4 MW of demand on work day afternoons. Second, there is a distinct time of
day pattern. Power demand is lowest during the night and early morning, and highest
during the late morning and afternoon. Third, there is a pronounced day of week be-
havior, with weekends (and non-work days in general) consisting primarily of the base
load, and workdays having a noticeable variable load.

An implication of a significant base load is that very little insight as to what is
responsible for campus power consumption, can be gleaned from the aggregate power.
Besides, known disaggregation techniques (such as in Hart [1992]) do not work, as they
cannot be scaled to handle hundreds to thousands of loads that are present in commer-
cial buildings. This means that more meters must be installed. Our meter placement
algorithm addresses the issue of how many meters are needed and where are they
needed, to minimize the cost while maximizing the information obtained.

The middle three plots in Figure 2 show the total power demand for Buildings 1,
2, and 3, respectively. The bottom plot shows the outside temperature. Comparing
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(a)

(b)

Fig. 3. (a) Overview of the methods used (b) Example topology of building electrical panels where meters
can be installed.

this plot to the others reveals a correlation between outside temperature, occupancy
(i.e., work hours) and power use. This motivates our investigation in Section 4.4 of
occupancy modeling, to reduce the use of heating or cooling in areas of the building
that people are not actively using.

4. METHODS
Figure 3(a) shows the overall framework of our approach. The meter placement algo-
rithm forms the basis for instrumenting a building power infrastructure. For build-
ing power management, we propose an unsupervised anomaly detection and rank-
ing method based on low dimensional embedding and k-nearest neighbors. Short-term
load forecasting is used for managing demand for demand response events. For dy-
namic control of lighting and HVAC resources, we describe a semi-supervised approach
that uses network port statistics to model occupancy.
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4.1. Meter Placement
As noted in Section 3.3, the significant base load in the power demand of these build-
ings and the sheer number of devices in a large commercial building make known load
disaggregation methods unreliable, thus requiring extensive metering of different elec-
trical panels in each of these buildings for fine-grained power monitoring. However, one
issue with this approach is that the total number of panels that could potentially be
monitored can be very large to the extent that meter deployment at all these locations
is not economical, given that the cost of each power meter can range anywhere between
$900 to $3, 000. In addition, the cost of installing these meters can be prohibitively ex-
pensive, especially in legacy buildings. This raises an interesting research question as
to how and which panels should be selected for power meter deployment.

There are several criteria one could use to choose the panels for meter deploy-
ment. They include the total energy consumption of a panel, variability in the energy
consumption, number of sub-panels/loads, predictability of panel power demand, or
other information-theoretic measures. We choose mutual information, an information-
theoretic measure that in a loose sense chooses panels that are highly unpredictable
in terms of their power demands. As we show in Section 5.1, the panels selected using
this criterion are superior to those selected using criterion such as the total energy
consumption or variability in energy consumption.

Next, we demonstrate how this problem can be formulated as an optimization prob-
lem with the goal of choosing the set of panels with maximum information content.

4.1.1. Problem Formulation. Before we formulate the problem, we need to introduce
some notation. The panels at different locations on the site are related in a topolog-
ical manner that can be represented by a tree, as shown in Figure 3(b). Each node
in this tree denotes a panel, where the leaf nodes (denoted by squares) correspond to
panels that directly feed either a single load (for example, a chiller or a compressor)
or a set of loads (for example, lighting load). The remaining nodes in the tree topology
(denoted by circles) correspond to panels that feed other panels given by their child
nodes in the tree.

Let S denote the entire set of panels, i.e., all the nodes in a given tree, and let L ⊂ S
denote the set of leaf nodes. For any node i ∈ S, let Xi be a random variable denoting
the power consumption recorded at panel i. Then, for any set of nodesA ⊂ S, we denote
by XA the random variables associated with the nodes in A.

Given a constraint on the number of meters that can be afforded (k), we use mutual
information as a criteria to choose the best set of panels for meter deployment, which
can be formulated as an optimization problem shown below.

arg max
A⊂S

I(XL;XA) (1)

s.t. |A| ≤ k,

where I(XL;XA) denotes the amount of information conveyed about the power con-
sumption at panels in L by monitoring power consumption at panels in A. Note that
when k ≥ |L|, i.e., in the scenario where one could afford to deploy a power meter at
each of the leaf nodes, the Mutual Information is maximized by choosing A to be the
set of all panels in L. On the other hand when k < |L|, the above optimization problem
attempts to find the best set of panels that provide maximum information about power
consumption at each of these leaf nodes.

4.1.2. Solution. Mutual Information is given by

I(XL;XA) = H(XL)−H(XL|XA),

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Data Analytics for Managing Power in Commercial Buildings 0:9

which corresponds to the reduction in the uncertainty of power consumption at panels
in L given the power consumption information at panels in A, where

H(XL) = −
∑
xL

Pr(XL = xL) log2 (Pr(XL = xL)) , and

H(XL|XA) = −
∑

xL,xA

Pr(XL = xL,XA = xA)

log2 (Pr(XL = xL|XA = xA)) .

Unfortunately, the optimization problem in (1) is NP-hard. Hence, we propose a
greedy approach to optimize the given problem. The greedy algorithm chooses panels
for meter deployment in a sequential manner, where given the set of panels that have
already been chosen by the algorithm (denoted by A), the next best panel is chosen to
be the one that maximizes the gain in mutual information, i.e.,

j∗ = arg max
j /∈A

I(XL;XA∪j)− I(XL;XA).

The solution obtained using the above greedy algorithm is not necessarily an optimal
solution for the optimization problem in (1). However, we show below that the obtained
greedy solution is guaranteed to be near-optimal.

4.1.3. Near-optimality of greedy solution. To show that the solution obtained using the
above greedy approach is near-optimal, we rely on the theory of sub-modularity that
was initially introduced by Nemhauser et al. [1978], and recently popularized by the
work of [Krause and Guestrin 2005a; 2005b]. Krause and Guestrin [2005b] study bud-
geted maximization problems of the form

arg max
A⊂S

F (A)

s.t. |A| ≤ k,
where S = {1, · · · , N} is a set of elements and F : A → R is a function that maps the
set of elements to the real line. A greedy solution to this problem is to select elements
sequentially according to

j∗ = arg max
j /∈A

F (A ∪ j)− F (A).

They further show that the solution obtained using this greedy approach will be near-
optimal in the following sense

Fgreedy ≥
(

1− 1

e

)
Fopt,

iff the objective function F is submodular, where submodularity is defined below.

Definition 4.1. (Submodularity) Let F be a function that maps from a set of ele-
ments S to the real line R. Then, F is said to be submodular iff ∀A ⊆ B ⊆ S and for
any j /∈ B,

F (A ∪ j)− F (A) ≥ F (B ∪ j)− F (B).

In our optimization problem, the objective function is mutual information, which
unfortunately is not submodular, except for some known special cases [Krause and
Guestrin 2005a; Krause et al. 2006; Krause et al. 2008]. However, as we show in the fol-
lowing lemma, mutual information turns out to be submodular in our problem setting,
thus guaranteeing near-optimality of the greedy algorithm described in Section 4.1.2.
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LEMMA 4.2. Given the tree topology described in Section 4.1, let S denote the set of
nodes in the tree and L the set of leaf nodes. Then, ∀A ⊆ B ⊆ S, and for any j /∈ B,

I(XL;XA∪j)− I(XL;XA) ≥ I(XL;XB∪j)− I(XL;XB) (2)

PROOF. From the definition of mutual information, we have

I(XL;XA∪j)− I(XL;XA) = H(XL|XA)−H(XL|XA∪j)
= H(Xj |XA)−H(Xj |XL,XA), (3)

where the second equality follows from the first by expanding the entropy terms and by
simple manipulation of the resulting terms. Note that the second term in (3) is equal
to 0, i.e., H(Xj |XL,XA) = 0, as given the power consumption at all of the leaf nodes,
the power consumption at any panel upstream is completely deterministic.

Hence, the relation in (2) reduces to showing

H(Xj |XA) ≥ H(Xj |XB),

which follows from the principle of “information never hurts” in information the-
ory [Cover and Thomas 1991]. Thus, proving the submodularity of mutual information
under the given tree topology.

From the above lemma, it follows that the information content captured by the
greedy set of panels (A greedy), is at least 63% of the information content that would
be captured by the optimal set of panels (A opt),

I(XL;XA greedy) ≥ (1− 1

e
)I(XL;XA opt).

4.1.4. Use of Granger Causality. An alternative strategy to select meters would be to ap-
ply Granger causality, which unlike mutual information, also considers the direction
of the flow of information. Note that this could be remedied by the use of Transfer
entropy, which is a version of mutual information that can detect the direction of in-
formation flow [Schreiber 2000], however, transfer entropy is currently restricted to
bivariate situations.

Granger Causality (or G-causality) test, which was initially introduced in the field
of economics [Granger 1969], is a statistical hypothesis test for determining whether
one time series is useful in forecasting another. It is normally tested in the context of
linear regression models. For example, let X(t) and Y (t) be two time series. Consider
the following two auto-regressive models for predicting X(t)

X(t) =

p∑
j=1

ajX(t− j) + e1(t) and X(t) =

p∑
j=1

ajX(t− j) +

p∑
j=1

bjY (t− j) + e2(t),

where p is the maximum number of lagged observations included in the model, and
e1(t), e2(t) are the prediction errors (residuals) for the two regression models. If the
variance in the prediction error is reduced by the inclusion of Y (t) in the model, then
Y is said to G-cause X. In other words, Y is said to G-cause X if the coefficients in
{bj}pj=1 are jointly significantly different from zero.

This test could potentially be used to reveal any hidden causal relationships between
the loads (leaf nodes in the tree topology). Incorporating these relationships could fur-
ther lead to a better choice of panels for meter deployment.

4.2. Anomaly Detection
Anomaly detection is useful in understanding and managing power consumption of a
large campus. The primary goal of anomaly detection here is to detect any abnormal
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behavior in the power usage time series. Note that an anomaly indicates an irregular
usage pattern and may not always correspond to a component failure or faulty opera-
tion; anomalies include irregular power usage resulting in high power consumption.

There are two main challenges for performing anomaly detection. The first challenge
is the lack of labeled data to train an algorithm for detecting anomalous behavior.
Obtaining labeled data is an expensive procedure as it requires a human (usually a
building administrator) to meticulously go through the vast amount of power data. In
addition, it might also necessitate injecting faults to obtain a good representation of
anomalies in the training data. The second challenge is the high dimensionality of the
power data. As mentioned in Section 3, the power consumption data is collected every
10 seconds resulting in around 8, 640 samples per meter per day.

In order to deal with these two problems, we propose a novel cluster-based unsu-
pervised algorithm that detects anomalous points via a low-dimensional embedding
of the power data. This algorithm takes as input the power time series observed by a
meter over multiple days, and outputs the probability of the power consumption be-
havior being anomalous on each of these days. These probability scores can then be
used to generate a ranked list of the data in the decreasing order of the data point
being anomalous. This ranked list is useful to a building administrator in prioritizing
the data points that need to be further inspected. The algorithm is described in more
detail in the following section.

4.2.1. Method. First, we need to introduce some convention. We refer to power data
measured by a single meter over a 24 hour period (i.e., one single day) as one obser-
vation or as a single power-time curve. However, the proposed algorithm is oblivious
to the time resolution of an observation, and hence can be varied. For example, one
can consider a finer time resolution such as 4 hours or a longer time period such as
1 week, as one observation. As mentioned above, due to the lack of labeled data, we
would need to resort to an unsupervised approach where we cluster the power-time
curves of each meter. The intuition behind this approach is that the data points that
exhibit normal behavior form a tight cluster and all those points that lie outside this
cluster are highly likely to correspond to an anomalous behavior.

In order to compare two power-time curves, we would need a good measure to quan-
tify the dissimilarity between two observations. We propose the use of standard Eu-
clidean distance measure or the l2 distance between the frequency spectrum of two
power-time curves as a measure of dissimilarity. Note that the frequency spectrum
consists of two components - magnitude and phase. We restrict our attention to the
magnitude of the frequency spectrum as it contains all of the necessary information
regarding the power consumption behavior. Figure 4(a) outlines the proposed algo-
rithm, which consists of five steps. We will now describe each step of the algorithm in
detail.

Step 1: Missing Value Imputation. A power-time curve may have some missing values
that could have been caused either due to a hardware or a software failure. Treating
these missing values as zeros will lead to unnecessarily high frequencies in the fre-
quency spectrum. We adopt a weighted global average strategy to impute the missing
values. This method can be used to impute blocks of missing values, while preserving
the local structure. Specifically, let x[n], n = 1, · · · , N denote a power-time curve where
N denotes the number of time samples. For any time index 1 ≤ m ≤ N with x[m]
missing, we impute its value by

x[m] =

∑N
k=1 w[k]x[k]∑N

k=1 w[k]
,
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Fig. 4. (a) Proposed Anomaly Detection Algorithm (b) A Hidden Markov model with hidden variable Xt and
observed variables Zt (c) Proposed 2-stage approach for Occupancy Estimation

where the weights w[k] are chosen such that they decrease as a function of their dis-
tance from the missing value. For example, the weight function can be chosen to be
w[k] = 1/|m− k|2.

The above imputation strategy can be considered as a temporal smoothing tech-
nique. Alternatively, one could perform spatial smoothing via nearest neighbors, where
the missing values are replaced with values obtained from other power-time curves
that have a similar profile in the non-missing region. In our data, on average less than
3% of values were missing.

Step 2: Frequency Spectrum Computation. In this step, we compute the frequency spec-
trum of the power-time curve obtained after imputing its missing values. Given a se-
quence x[n], for n = 1, · · · , N , its frequency spectrum is computed as

X[k] =

N∑
n=1

x[n] ∗ exp
(
−j2π(k − 1)

n− 1

N

)
, 1 ≤ k ≤ N.

We denote the magnitude of the frequency spectrum by Y [k], where Y [k] = |X[k]|,
k = 1, · · · , N . We are interested only in the magnitude of the frequency spectrum as it
contains all the information regarding the total power consumption.

Step 3: Dissimilarity Matrix Computation. Given M different observations corresponding
to power-time curves on M different days, we compute the dissimilarity between the
power consumption profiles for any two observations using the standard Euclidean (or
l2) distance measure between their frequency spectrums as

δij =

[
N∑

k=1

(Yi[k]− Yj [k])2

] 1
2

.

The M ×M dissimilarity matrix ∆ is obtained by computing the above distance mea-
sure for all pairs of observations. The resulting dissimilarity matrix ∆ should be sym-
metric, i.e., ∆ = ∆T.

Step 4: Low-dimensional Embedding. Given the M ×M dissimilarity matrix ∆, we use a
dimensionality reduction algorithm such as MDS (Multi-dimensional scaling) to obtain
a low-dimensional Euclidean embedding of theM observations in a d� N dimensional
Euclidean space (i.e., Rd). An Euclidean embedding algorithm finds a set of M points
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in Rd such that the pairwise distances between these points are close to the values
given in the matrix ∆.

Figure 9 demonstrates a low-dimensional Euclidean embedding of 33 power-time
curves where d = 2. Note that each point in the resulting euclidean embedding corre-
sponds to a power-time curve.

Step 5: k-NN Anomaly Detection. Given this low dimensional embedding, the last step
is to compute the probability score of each observation being anomalous. We compute
these values through a k-NN (nearest neighbor) density estimation algorithm. Note
that a low-dimensional embedding of the power data is crucial for this step, as density
estimation is known to perform poorly in a high dimensional space.

For every point y ∈ Rd in the low dimensional space, the local density at that point
can be estimated as

f̂(y) =
k

Vol. of smallest hyper-sphere containing k NNs of y

where k is chosen to be O(M
1
d ). Given the local densities at each of the M observations,

the probability of an observation being an anomaly is computed as

Pr(yi is anomalous) = 1− f̂(yi)

maxj=1,··· ,M f̂(yj)
.

Intuitively, observations that are in a high density region are less likely to be anoma-
lous and those in low density regions are more likely to be anomalous.

4.3. Short-Term Load Forecasting
With the advent of advanced metering infrastructure, many commercial buildings are
now being fitted with smart meters that can record electricity consumption every 15
minutes or less. Mining these large amounts of electricity consumption data will pro-
vide valuable insights into peak demand periods for buildings and provide accurate
short term load forecasts. Such short term load forecasts (e.g., 1 hour ahead, 1 day
ahead) and at finer spatial scale (e.g., floor level, zone level, load level) is crucial for
many applications, such as frequency and voltage regulation, demand response partic-
ipation, and micro grid management [Moslehi and Kumar 2010].

4.3.1. Methods. We study several machine learning algorithms and compare their per-
formance for fine-grained, short-term load forecasting. Particularly, we compare six dif-
ferent algorithms - linear regression (LM), gradient boosted machines (GBM), support
vector regression using a radial basis function (SVM), Gaussian process regression us-
ing a radial basis function (GAUSSPR), random forest (RF), and an Ensemble model
that averages the output of the above 5 algorithms. Below, we describe the forecast
operation more formally.

Let yt denote a consumption time-series, where the time index t is typically dis-
cretized to hourly intervals. Given historical consumption data (i.e., {yt : t ≤ T}), our
goal is to make a 24 hour ahead forecast, i.e., to estimate the consumption values yt
for T ≤ t ≤ T + 24. To make such a short-term forecast, we use features related to
historical data, contextual features related to time, and other external factors such as
weather forecast.

For historical features, we use the load consumption at the same time over the past
3 days (i.e., {yt−24, yt−48, yt−72}) as well as the load consumption at the same time
and same day of the week over the past 3 weeks (i.e., yt−24∗7, yt−24∗7∗2, yt−24∗7∗3). For
contextual features related to time, we use hour of the day (0 to 23), day of the week
(Sunday to Saturday), date (1 to 31) and season (Summer, Fall, Winter, Spring). In
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addition, we use external factors corresponding to weather forecast such as ambient
temperature and ambient humidity level.

For each machine learning algorithm, we optimize the model hyper-parameters us-
ing a k-fold time-series cross validation which works as follows. Given a time-series
{yt : 1 ≤ t ≤ T}, let 0 < T1 < T2 < · · · < Tk < T be k ordered time instants that are
chosen either randomly or uniformly over the entire time period. In the ith fold, the
forecast model is trained using the consumption data in the time interval t ∈ [0, Ti],
and cross-validated on data belonging to the time interval t ∈ (Ti, T ].

4.4. Occupancy Modeling
Occupancy modeling forms another important component for efficient power manage-
ment in buildings. Many commercial buildings employ either a fixed time L-HVAC
(Lighting, Heating ventilation and air conditioning) schedule or a fixed temperature
set point schedule. This often leads to unnecessary conditioning of the building, es-
pecially when the actual occupancy is low. Hence, some recent work has suggested
occupancy-based L-HVAC scheduling for efficient power management. However, most
of this work assumes the availability of occupancy sensors, whose installation and
maintenance may be prohibitive on a large campus.

Alternatively, Melfi et al. [2011] proposed the use of existing network infrastruc-
ture to estimate occupancy. They studied the use of Dynamic Host Control Protocol
(DHCP) logs and other explicit ways such as monitoring PC activity in estimating oc-
cupancy. We instead develop an implicit occupancy sensing procedure, where we use
traffic statistics associated with network ports in each cubicle to build occupancy mod-
els. Network switches typically maintain per port counters for the amount of traffic
flowing in and out. We retrieve these statistics from the switches in the buildings ev-
ery 30 minutes. The estimated occupancies at the cube level are then used to estimate
occupancy of a zone (e.g., multiple cubicles), which can further be used for occupancy-
based L-HVAC scheduling of that zone.

A primary challenge with using network data to estimate occupancy is the lack of
labeled data. Obtaining labeled data from each occupant is not only expensive but also
raises issues related to privacy. To address this, we consider two different approaches.
The first is an unsupervised approach where we use a Hidden Markov Model (HMM)
to estimate occupancy from network data. The second is a two-stage semi-supervised
approach. Its first stage involves unsupervised learning using HMM, while the second
stage trains a classifier using minimal labeled data. The two approaches are described
in more detail in the following section.

4.4.1. Methods. We first propose an unsupervised approach where we model the prob-
lem of occupancy estimation from network data as a Hidden Markov Model (HMM). A
HMM is a statistical Markov model in which the system being modeled is assumed to
be a Markov process with unobserved (hidden) states. Unlike a regular Markov model
where the state transition probabilities are the only unknown parameters, in an HMM,
the state is not directly visible, but output dependent on the state is visible. Each state
has a probability distribution over the possible output tokens, referred to as emission
probabilities. The observed output tokens provide some information about the hidden
states. HMM has two phases, a learning phase where the state transition probabilities
and the emission probabilities are estimated, and a decoding phase to estimate the
hidden states from the observed tokens using the estimated probability parameters.

We model the problem of occupancy estimation from network data as an HMM,
where the hidden variables Xt correspond to the binary occupancy states, and the
observed variables Zt correspond to the port level network traffic data, as shown in
Figure 4(b). We consider a simple model where we assume that the transition prob-
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abilities and the emission probabilities do not vary with time or any other external
parameters. As we show in Section 5.4, this model performs fairly well.

However, the above assumptions may not be entirely true. In fact, it seems more ap-
propriate to model these probabilities as a function of other features such as time of the
day, day of the week, etc. However, the dependence of these parameters on such exter-
nal features is known to significantly increase the complexity of HMMs, to the extent
of making them intractable on large datasets. Alternatively, we propose a novel two
stage semi-supervised approach that can efficiently incorporate the effect of external
features, as shown in Figure 4(c).

In the first stage of this two stage approach, we model the network data using HMM
with k underlying states for the hidden variable, where we choose the value of k that
optimizes the log-likelihood function,

log
( T∏
t=0

Pr(Zt|Xt)
)
.

In the second stage, we train a classifier whose input is a feature vector consisting of
the output state of k-HMM along with other external parameters such as time of the
day, day of the week, etc. This approach remains tractable even on large datasets while
efficiently incorporating the effect of any external parameters on the occupancy.

Besides, there are two other key advantages of using this first stage over just a
supervised algorithm with network activity as one of the inputs. The first advantage
is that it significantly reduces the labeling effort of an occupant during the training
phase, where an occupant can now provide binary labels to the k output states of the
HMM rather than providing their occupancy logs over time. This also addresses the
issue of privacy to some extent. The other advantage of using the k-HMM is that it
significantly reduces the size of the input feature space as k is usually very small
compared to the total number of possible states for the network data. The result of a
smaller feature space is that it requires less training data to efficiently train a classi-
fier.

5. EXPERIMENTAL RESULTS
5.1. Meter Placement
To assess our meter placement method, we begin by using the greedy algorithm de-
scribed in Section 4.1 to select the most informative meters among the 137 power
meters installed on our campus. The underlying tree topology corresponding to these
power meters is shown in Figure 5. The figure also shows the average power con-
sumption values for the panels in the top three tiers. For simplicity, we assume in our
experiments that the random variables corresponding to the power consumption at
different panels are Gaussian.

Next, we greedily select the meters in a sequential manner using the greedy algo-
rithm described in Section 4.1 under three different criteria: mutual information, total
power consumption and variability in power consumption. Table I shows a ranked list
of the meters in the order in which they are selected using these three criterion. Fig-
ure 6(a) shows plots comparing the three ranked lists. The diagonal line (dotted red
line) in these plots correspond to the scenario where the two ranked lists are exactly
equal.

Given this ranked list and a budget (t < 137) on the number of panels that can be
metered, the top t panels from the ranked list can be chosen to be metered. The power
consumption measured at these metered panels can then be used to predict the power
consumption at the remaining panels. We use this predictive ability as a measure
of goodness of the selected meters. We now compare the above three criteria based
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Fig. 5. (a) Tree topology of the 137 panels (b) Average power consumption of the top tier panels

Table I. Selection order of first 12 meters

Total Variability in Mutual
# Power Consumption Power Consumption Information
1 msg msg msg
2 b1-main b1-main swb29-CH2
3 b2-main swb29-main b1-CH3
4 b3-main b2-main b2-main
5 b1-1DH1 swb29-CH2 b3-main
6 b3-1315 b3-AEP b3-AEP
7 b1-SB13 b1-CH3 swb29-main
8 b3-DistPanel-1316A b1-SB13 b1-CH1ALW
9 b1-CH3 b3-3DH1 b2-DistPanelM

10 b3-ATS3L b2-DistPanelM b1-1DH1-2328
11 b2-XFRMR2T1 b3-3DH1-DPA1504 b2-MCC2LW
12 b1-ATS1L swb29-P3 b3-3DH1

on the predictive ability of the corresponding panels selected. A random selection is
also included as a baseline. Figure 7(a) demonstrates the average RMS (root mean
squared) prediction error over all non-metered panels as a function of the number of
panels metered (t). Similarly, Figure 7(b) demonstrates the average normalized RMS
prediction error, where the normalization is based on the average power consumption
of a meter. Note from these two figures that the proposed mutual information based
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Fig. 6. (a) Comparison of ranked list similarity (b) The top 12 panels selected by the greedy algorithm with
mutual information criterion

meter deployment outperforms those based on the total power consumption and the
variability in power consumption. The curve corresponding to the random selection is
averaged over 100 different random orderings of the 137 meters.

Figure 6(b) demonstrates the top 12 panels selected using mutual information. The
validity of the obtained solution can also be verified intuitively. For example, panel b1-
main is not selected as it is completely deterministic given the aggregate meter (msg)
and the other three main meters (swb29-main, b2-main and b3-main). Similarly, most
of the tier 3 panels that were selected consist of loads that are less predictable given
the others. For example, b3-Panel-AEP corresponds to the panel that directly measures
the power generated by the photo-voltaic array installed on Building 3. This meter is
less predictable and hence can be considered as a good choice for meter deployment.

5.1.1. Discussion and Extensions. One limitation of our current implementation is the
Gaussian assumption on the distribution of the random variables. This is not a strictly
valid assumption, as most panels have at least two distinct operating states, one with
higher power consumption during business hours and the other with a baseload power
consumption during non-business hours. Hence, a more accurate approach would be
to model these random variables as a mixture of Gaussian. However, one limitation of
using a Gaussian mixture model is that there is no closed form expression for entropy
of a Gaussian mixture density, and hence one would need to approximate it.
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Fig. 7. Comparison of the predictive ability of the panels selected for metering in estimating power con-
sumption at non-metered panels: (a) Average RMS prediction error (b) Average Normalized RMS prediction
error

5.1.2. Use of Granger Causality. As described in Section 4.1.4, we investigate the use
of Granger causality in selecting panels for meter placement. We use the G-causal
test to rank the panels based on their predictive ability (results omitted for brevity).
However, the mutual information based ranking performed better than the G-causal
ranking with respect to the RMS prediction error on the non-metered panels. This
could be due to the fact that the G-causal test is currently limited to linear regression
models, whereas information theoretic measures are also sensitive to any non-linear
relationships. Although extensions of the G-causal test to non-linear models exist, they
are computationally less efficient and their statistical properties are not well studied1.

5.2. Anomaly detection
We performed anomaly detection on six months of data from 35 of the 137 power meters,
corresponding to the panels in the top three tiers of the tree topology (Figure 5). To
validate our results, for three of these meters (b1-main, b2-main and b3-main), we
obtained the ground truth by consulting with the building administrator, who looked
at the entire time series data and marked days with potential anomalous regions.

1http://www.scholarpedia.org/article/Granger causality
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Date Score
Jul 6 0.99
Jul 7 0.97

Jun 28 0.80
Jun 20 0.75

Jul 8 0.64
...

...
(a)

Meter name AUC
b1-main 0.87
b2-main 0.96
b3-main 0.99

(b)

Category # of Anomalies
1 High power usage 66
2 Low power usage 65
3 Irregular Shutdown 6
4 Irregular (time) usage 9
5 Oscillatory behavior 28
6 Abnormal drop/rise 29

(c)

Fig. 8. (a) A sample ranked list of anomalies (b) Accuracy of the proposed algorithm in identifying anomalies
as measured by AUC (c) Anomaly categories.

As described in Section 4.2, our algorithm assigns a probability score to each day,
which can be used to obtain a ranked list of days in decreasing order of them being
anomalous, as shown in Figure 8(a).

Given this ranked list, a building administrator could choose a threshold k and de-
clare the top k points as anomalies for further inspection, and the remaining as nor-
mal, where k could vary from 0 to the maximum number of points in the input data.
Each choice of k results in a certain number of false positives and false negatives. For
example, when k = 0, i.e., when all the points are declared as normal, the false posi-
tive rate (FPR) is 0 while the false negative rate (FNR) will be 1. On the other hand,
when k is the number of points, the associated FPR is 1 and FNR is 0. Varying this
threshold k results in different values of FPR and FNR, leading to a receiver operating
characteristic (ROC) curve. The area under the ROC curve (AUC) defines the quality
of the obtained ranking. In the ideal case, where all the anomalous points are ranked
at the top followed by normal points, the AUC takes the maximum value of 1. On the
other hand, a random ranking achieves an AUC value of 0.5. We use AUC as a perfor-
mance metric for our algorithm. Figure 8(b) shows the AUC values for the ranked list
obtained using our algorithm on three meters.

Further, we applied the anomaly detection algorithm on the remaining 32 meters of
the top three tiers, where we obtained a ranked list of anomalous days for each meter.
We then manually characterized the top k anomalies in these ranked lists by assign-
ing them categories, as shown in Figure 8(c). Note that a particular anomaly could
belong to multiple categories. Detecting these anomalies could potentially offer sev-
eral benefits such as energy savings, detecting faulty equipment resulting in savings
in maintenance costs, etc. Potential power savings in the high power usage and irreg-
ular time usage anomalies varied from around 50 kWh to 2,000 kWh per anomaly. In
Figure 9, we demonstrate four of these six categories.

The first three examples shown in this figure provide opportunity for potential en-
ergy savings. Figure 9(a) corresponds to a meter whose load consists of overhead light-
ing on a floor in one of the buildings. The low-dimensional embedding obtained using
MDS shows a tight cluster of days with normal behavior, and two points (circled) that
were detected as anomalous. The first anomaly corresponds to an abnormal low power
usage (Category 2), which turned out to be July 4th, a holiday; while the other anomaly
(June 17th) corresponds to high and irregular time usage (categories 1 and 4), where
the lights remained on all night. This is an example of a potential anomaly (e.g., caused
by an error in the lighting control system) that if fixed could have saved about 180 kWh
of electricity. Figure 9(b) demonstrates a similar anomaly (June 23rd) with respect to
the air handling units (AHU), where the air handlers were operating at full capacity
until late in the night. Correcting this anomaly could have saved about 450 kWh of
electricity. Note that the AHU load has multiple normal modes of operation depending
on the utilization level of the air handling capacity. Similarly, Figure 9(c) demonstrates
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Fig. 9. Low dimensional embedding of power data corresponding to weekdays for four different meters.
The figure also shows power profile during normal operation and the power profiles of abnormal events as
detected by the algorithm.

two anomalies (July 6th and 7th) with respect to a fan load, where the motor fans were
operating all through the night.

Finally, the example shown in Figure 9(d) corresponds to a chiller load. In this case,
we detected three anomalous points corresponding to three consecutive days (July 5th
and 6th shown in the figure), where the chiller was abruptly shut down (Categories 2
and 3) during business hours. If this was not caused due to a maintenance schedule, it
could potentially correspond to a failed component.

5.3. Short-term Forecasting Results
We tested short-term load forecasting on 10 power meters corresponding to panels
selected from the top three tiers of the tree topology. Table II lists these meters along
with their load description and the variability in their consumption as measured by
the normalized standard deviation (i.e., standard deviation/mean). We used 1 year of
historical data with a four fold cross-validation to train the models. The consumption
data was aggregated to hourly intervals, and the results are based on a 24 hour ahead
forecast.

We evaluate the performance of our algorithms in terms of forecast accuracy. There
are several accuracy measures such as Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE), Mean Absolute Percentage Error (MAPE) and Coefficient of Vari-
ation (CV) that have been proposed in the literature for time-series analysis. However,
each of these measures have some drawbacks. For example, RMSE and MAE are not
scale invariant. While MAPE and CV are normalized metrics and hence scale invari-

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Data Analytics for Managing Power in Commercial Buildings 0:21

Table II. Description of the meters selected for short-term forecasting.

Meter name Normalized standard deviation Load description
1 msg 0.24 Aggregate: Site
2 b1-main 0.14 Aggregate: Building 1
3 swb29-main 1.48 Aggregate: Building 1
4 b3-main 0.10 Aggregate: Building 3
5 b1-CH3 0.61 Single Load: Chiller
6 b2-MCC1121 0.14 Multiple Loads: Fans
7 b2-2UW 0.56 Multiple Loads: Lighting
8 b2-2HY 0.56 Multiple Loads: Outdoor
9 b3-3UW 0.62 Multiple Loads: Lighting

10 b3-3T1 0.20 Multiple Loads: Office space

ant, they do not have a lower or upper bound on the percentage error. They also tend
to be very sensitive to outliers in the data. To overcome these problems, Bandyopad-
hyay et al. [2015] suggested the use of Symmetric Mean Absolute Percentage Error
(SMAPE). SMAPE is a bounded measure that ranges between 0% and 100%, and can
be used to compare the forecast accuracy across models and across meters. SMAPE is
defined as

SMAPE =
∑24

t=1 |ŷt−yt|∑24
t=1 |ŷt|+|yt|

∗ 100,

where y1, y2, · · · , y24 and ŷ1, ŷ2, · · · , ŷ24 correspond to the original and forecasted values
of the time-series over a 24 hour period.

Figure 10 shows the forecasting results for the 10 meters using the six algorithms
described in Section 4.3.1. The forecast error measured using SMAPE is averaged over
4 test days. The meters are ordered based on their normalized standard deviation
(NSD) from low to high. One would expect the forecast performance to depend on the
aggregation level of the meter, i.e., single load vs. aggregate building. Instead, our
results demonstrate that the forecast performance tends to depend on the normalized
standard deviation or the variability of the time-series.

Particularly, note from Figure 10 that meters with a low normalized standard de-
viation aka low variability (NSD < 0.3) have a low forecast error, while meters with
high normalized standard deviation (NSD > 0.3) tend to have a higher forecast error.
Moreover, for meters with low variability, the difference between the performance of
the various algorithms is insignificant, and hence a simple algorithm such as linear
regression may be used for short-term forecasting. On the other hand, for meters with
high variability, the forecast performance tends to vary highly among the different
algorithms, with SVM and Ensemble achieving best overall performance.

5.4. Occupancy Modeling
In this section, we first quantify the performance of the proposed algorithms for occu-
pancy estimation by comparing the estimated occupancy states to the ground truth.
We then use the estimated occupancy to forecast potential energy savings that could
be achieved by implementing an occupancy based lighting schedule.

We compare the performance between four different algorithms. The first algorithm
is based on HMM with two underlying states, which is a completely unsupervised ap-
proach. The second and the third algorithms are semi-supervised approaches using a
k-state HMM as described in Section 4.4.1, followed by a Naive Bayes classifier or a
support vector machine (SVM) based classifier. The last algorithm is a supervised ap-
proach where the classifier is trained directly based on the port-level network statis-
tics, and other features such as time of day.

To quantify the estimation accuracy of these algorithms, we collected the ground
truth data from ten different occupants over a period of 16 weekdays. The occupants
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Fig. 10. Average error in short-term forecasting.

maintained their occupancy logs by marking their presence in their cube at a time res-
olution of 30 minutes, where an occupant marks their presence only if they are present
for a majority of that 30 minute period. The in and out flowing network switch statis-
tics are also collected every 30 minutes. The results of the experimental evaluation are
shown in Figure 11.

Figure 11(a) compares the average error (or misclassification) rate in the estimated
cube occupancy using the four different algorithms. The error rate is averaged over
16 different test cases. In each test case, the last three algorithms are trained using
15 days of occupancy data and tested on the left out day. Note from this figure that
the two-state HMM in spite of being an unsupervised approach performs well, with an
error rate less than 15% in eight of the ten cubes. In addition, k-state HMM along with
SVM does marginally to significantly better in eight of the ten cubes, than a supervised
approach that is directly based on the network statistics.

In Figure 11(b), we compare the quality of the two features (k-state HMM output and
network statistics) in terms of estimating the occupancy states. The feature quality is
measured using normalized mutual information between the feature states and the
true occupancy labels. This figure shows that the k-state HMM output has a better
feature quality than the port-level network statistics, further validating that the pre-
processing step resulted in an improved classification accuracy.

The estimated occupancy states for each cube are then aggregated to estimate the
occupancy of a zone. Figure 11(c) compares the true occupancy of a zone comprised of 10
occupants with that estimated using the 4 different approaches. Note from this figure
that k-HMM+SVM performs the best, and 2-HMM, in spite of being an unsupervised
approach, does well.

Our next experiment estimates the energy savings that can be obtained by using
an occupancy-based lighting schedule. The current lighting schedule in our building
is such that the lights are switched on as occupants arrive in the morning and the
lights of all zones on one floor (about 159 cubicles) are set to turn off automatically at
9 pm. One of the 137 power meters captures the lighting load on this floor. We demon-
strate the potential energy savings by implementing an occupancy-based schedule for
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Fig. 11. (a) Average error rates of models (b) Feature quality (c) True zone occupancy vs. estimated values
(d) Projected energy savings based on occupancy-based lighting schedule

switching off the lights at night, where the occupancy is estimated using 2-HMM. The
use of this completely unsupervised approach is justified since 2-HMM usually over-
estimates the leaving time of an occupant, thus providing a conservative estimate of
the time when all the occupants in a zone would have left. Figure 11(d) demonstrates
the average energy savings for 13 different zones in one of the buildings, using two ap-
proaches. The first is static scheduling where for each zone, the lights are re-scheduled
to turn off based on the worst case scenario observed over all days for that zone. This
approach does not offer much savings as there could be a rare incident where an occu-
pant of a zone stays till 9 pm or later. The second approach is to dynamically schedule
the switch off time for lights in a zone based on the estimated occupancy for that zone.
That is, the lights in a zone are turned off when the estimated occupancy for that
zone becomes zero. This time may vary each day. Note from Figure 11(d) that this
approach provides significant savings in the lighting energy. Overall, the proposed ap-
proach provides around 9.53% in savings for the building in consideration whose peak
lighting load is 45 kW.

6. CONCLUSIONS
Commercial buildings consume significant amounts of energy. Concerns over energy
prices and global climate change are motivating building operators to reduce energy
consumption. In this paper, we proposed and evaluated four methods to aid in this ef-
fort. Our meter placement algorithm is both efficient and effective, guaranteeing a near
optimal solution to information maximization by exploiting submodularity. In compar-
isons with other methods, the ability of the meter set selected using our algorithm to
predict the measurements of the unselected meter set were found to be superior (by
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an average of about 15% ). Our anomaly detection method is shown to identify nu-
merous types of unexpected consumption patterns. Our investigation on fine-grained,
short-term load forecasting revealed an interesting relation between time-series vari-
ability and the optimal forecast method, with support vector regression and an Ensem-
ble model being the best method for time-series with high variability, while a simple
method such as linear regression is equally effective for time-series with low vari-
ability. Lastly, our occupancy modeling approach can be used to dynamically control
lighting or HVAC resources, thereby reducing their energy consumption.

We plan to extend our work in numerous ways. We would like to further integrate
our power management module by aiding anomaly detection through occupancy mod-
eling. We would also like to automate the anomaly characterization task, and extend
our anomaly detection algorithm to be able to incorporate feedback obtained from a
building administrator.
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