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Abstract
Commercial buildings are significant consumers of elec-

tricity. In this paper, we collect and analyze six weeks of
data from 39 power meters in three buildings of a campus of
a large company. We use an unsupervised anomaly detection
technique based on a low-dimensional embedding to identify
power saving opportunities. Further, to better manage re-
sources such as lighting and HVAC, we develop occupancy
models based on readily available port-level network logs.
We propose a semi-supervised approach that combines hid-
den Markov models (HMM) with standard classifiers such as
naive Bayes and support vector machines (SVM). This two
step approach simplifies the occupancy model while achiev-
ing good accuracy. The experimental results over ten office
cubicles show that the maximum error is less than 15% with
an average error of 9.3%. We demonstrate that using our oc-
cupancy models, we can potentially reduce the lighting load
on one floor (about 45 kW) by about 9.5%.

Categories and Subject Descriptors
H.4.m [Information Systems]: Information Systems

Applications—Miscellaneous

General Terms
Measurement, Management

Keywords
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1 Introduction
Commercial buildings use a significant amount of energy

as part of their day-to-day operations. In 2009, commer-
cial buildings in the United States alone consumed an esti-
mated 1.3 trillion kWh or about 37% of the total electricity
generated [13]. Owing to concerns such as increasing en-
ergy costs, shrinking operational budgets, and global climate
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change, there is growing interest in understanding how re-
sources such as electricity are used in commercial buildings,
so that steps can be taken to reduce consumption.

In this paper, we collect and analyze real power data from
three commercial buildings, totaling 300,000 sq. ft. We have
installed 39 meters on the campus power delivery infrastruc-
ture, to get a more complete understanding of power use.

The main goal of this study is to provide an understand-
ing of how, when and where power is consumed in a com-
mercial campus. With respect to this goal, we propose an
unsupervised technique to identify anomalous usage peri-
ods in power consumption time series data. We examine
six weeks of data, and show a number of power saving op-
portunities. We also develop occupancy models based on
computer network port-level logs, to help determine more
efficient management policies for lighting and HVAC. We
propose a novel semi-supervised approach combining a hid-
den Markov model (HMM) with a classifier. Further, based
on our occupancy models, we estimate that modifying the
lighting schedule can save about 9.5% of lighting power.

The main contributions of this paper include a (brief)
characterization of power use in a commercial campus,
the design and use of an unsupervised anomaly detection
method, design of semi-supervised occupancy models and
their use to help reduce power consumption. These stud-
ies also revealed a number of challenges that motivate future
work in this area.

2 Related Work
Commercial buildings consume a lot of energy [13]. This

motivates research to improve building energy efficiency.
Few campus-scale studies of energy use exist. Agarwal et
al. [1] examined 6 months of data from the UCSD campus,
including aggregate power consumption of four buildings.
Our study is complementary, as we examine energy use of a
commercial (rather than educational) campus.

Examining data for anomalies is a known approach for
identifying abnormal system behavior. Catterson et al. use
this approach to monitor old power transformers [2]. Their
goal is to proactively search for abnormal behavior that
may indicate the transformer is about to fail. Similarly,
McArthur et al. search for anomalies to detect problems with
power generation equipment [9]. Jakkula and Cook com-
pare several outlier detection methods to find which is better
at identifying abnormal power consumption [6]. Seem [12]
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Figure 1. Aerial view of the campus, showing the six main buildings,
three of which are currently instrumented for power monitoring.

and Li et al. [8] both search for anomalies in building power
consumption, to detect abnormal power use. Our work on
anomaly detection extends the results of these studies.

Occupants of a building contribute to its energy footprint.
Unfortunately, directly tracking the number of people in a
building is challenging. To estimate the occupancy, we cre-
ate models based on data retrieved from periodic scans of the
computer network in the campus. This is a similar approach
to that of Newsham and Birt [11]. Erickson et al. [4], and
Kim et al. [7] model occupancy through a variety of means.
Again, our work is complementary.

3 Campus Overview
We use our campus as a testbed to investigate the moni-

toring and management of resources such as power, gas, wa-
ter and waste, with initial focus on power. The campus con-
tains six main buildings with a total footprint of 700,000 sq.
ft. At present, our efforts are focused on three two-storey
buildings (1, 2, 3), as highlighted in Figure 1. These three
buildings have a 300,000 sq. ft. footprint, representing 43%
of the total campus floor space, hosting about 500 occupants.
3.1 Power Distribution Topology

Figure 2 shows the power distribution topology for build-
ings 1, 2 and 3. They are all fed by a single utility feed
(3-phase 12.5kV). There is an emergency back-up genera-
tor (3-phase 480V) to maintain a subset of critical loads in
the event of a utility failure. These switch over to genera-
tor power via automatic transfer switches (ATS). The main
distribution panels in each building (3-phase 480V) branch
to about 10 major sub-loads or sub-panels within each build-
ing. Building 3 has a 135kW photovoltaic array atop of it, to
offset power demand during daylight hours.
3.2 Power Data Collection

Our present monitoring installation has 39 power meters,
deployed at the site, building and top-level load distribution
panels, as shown in Figure 2. We plan to instrument the
second-tier distribution panels within each building, which
will triple the number of power meters. This will provide
finer grained electrical data monitoring for our future work.
The main challenge in deploying the monitoring infrastruc-
ture is accurately deciphering the power distribution topol-
ogy. The buildings are about 60 years old, and have ex-
perienced infrastructural and functional changes over their
lifespans, which are not always well documented. While this
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Figure 2. Power distribution and metering topology.
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Figure 3. Campus power use and outside temperature.

challenge may not exist in new buildings, we suspect that it
will for the many existing (legacy) campuses.

All of our electrical meters are commercial (3-phase) de-
vices from Schneider Electric (www.schneider-electric.
com). We poll a set of parameters from each meter every
10 seconds using the MODBUS over Ethernet protocol. The
monitored parameters include line voltage, real and apparent
power, power factor, current and frequency. We maintain a
historical log of power related data using PI-Server from OS-
Isoft (www.osisoft.com), which we also use to obtain data
from the photovoltaic array installation atop building 3.
4 Characterization of Campus Power Use

This section provides a brief summary of power use on
the campus. The top graph in Figure 3 shows the aggre-
gate power demand for buildings 1, 2 and 3 for the period
of Sunday, July 10, 2011 through Saturday, July 16, 2011.
This graph reveals several key characteristics. First, the de-
mand has both a constant (base) and variable load compo-
nents. The base load is quite significant, at 1.5 MW. A large
IT infrastructure is partially responsible for this. The vari-
able component adds up to 0.5 MW of demand. Second,
there is a distinct time of day pattern. Power demand is low-
est during the night and early morning, and highest during
the late morning and afternoon. Third, there is a pronounced
day of week behavior, with weekends (and non-work days in
general) consisting primarily of the base load, and work days
having the noticeable variable load.

One implication of the significant base load seen in the
aggregate power demand is that known disaggregation tech-
niques (e.g., [5]) are not likely to work well. The use of more
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pervasive power monitoring will help us to determine what
contributes to the base load.

The middle three graphs in Figure 3 show the total power
demand for each of Buildings 1, 2 and 3, respectively. Build-
ing 1 has a base load of about 0.6 MW, and a peak load of
nearly 0.9 MW, while Building 2 has a base load of approx-
imately 0.5 MW, and a peak load up to 0.7 MW. It has es-
sentially no variable load on non-work days. However, there
were two large spikes (almost 100 KW) on Sunday. This sort
of behavior seems anomalous, and helps motivate our work
on anomaly detection in Section 5.

Building 3 has a base load of almost 0.5 MW. Unlike
Buildings 1 and 2, Building 3’s variable load is negative. At
first glance, this may seem anomalous; however, this is due
to the presence of a 135 KW photo-voltaic array installed on
that building. The last graph shows the outside temperature.

5 Anomaly Detection
In this section we use anomaly detection to better under-

stand the campus power consumption. Our primary goal is to
detect any abnormal behavior in the power usage time series.
Note that an anomaly indicates an irregular usage pattern and
may not always correspond to a component failure or faulty
operation.

There are two main challenges for performing anomaly
detection. The first challenge is the lack of labeled data to
train an algorithm for detecting anomalous behavior. Ob-
taining labeled data is an expensive procedure as it requires a
human (usually a building administrator) to meticulously go
through the vast amount of power data. In addition, it might
also necessitate injecting faults to obtain a good representa-
tion of anomalies in the training data. The second challenge
is the high dimensionality of the power data.

To deal with these two problems, we propose a novel
unsupervised cluster-based algorithm that detects anomalous
points via a low-dimensional embedding of the power data.
This algorithm takes as input the power time series of a me-
ter over several days, and outputs the probability of a par-
ticular day being anomalous. The probability scores can be
used to rank the days in terms of anomalousness, providing
a building administrator with a prioritized list of data points
that require further inspection. The algorithm is described in
detail next.

5.1 Methods
First, we need to introduce some convention. We refer to

power data measured by a single meter over a 24 hour period
(i.e., one day) as one observation or as a single power-time
curve. Due to the lack of labeled data, we use an unsuper-
vised approach where we cluster the power-time curves of
each meter. The intuition behind this approach is that the
data points that exhibit normal behavior will form tight clus-
ters while anomalous points will lie outside these clusters.

To compare two power-time curves, we propose the
use of the standard Euclidean distance measure, or the l2
norm, between the frequency spectrum of the two power-
time curves. Note that the frequency spectrum consists of
two components - magnitude and phase. However, we re-
strict our attention to the magnitude of the frequency spec-
trum as it contains all the necessary information regarding

the power consumption behavior.
Our proposed algorithm consists of five steps. The first

step is to impute missing values in a power-time curve.
These missing values could have been caused either due to
a hardware or a software failure. Treating these missing val-
ues as zeros will lead to spurious high frequencies in the fre-
quency spectrum. We adopt a weighted global average strat-
egy as this method can be used to impute blocks of missing
values, while preserving the local structure. Specifically, let
x[n], n = 1, · · · ,N denote a power-time curve where N de-
notes the number of samples. For any time index 1≤m≤ N

with x[m] missing, we impute its value by x[m] =
∑

N
k=1 w[k]x[k]

∑
N
k=1 w[k]

,

where the weights w[k] are chosen such that they decrease
as a function of their distance from the missing value. For
example, the weight function can be chosen to be w[k] =
1/|m− k|2. This imputation strategy can be considered as a
temporal smoothing technique. In our data, on average less
than 3% values were missing.

Step 2 computes the frequency spectrum of the imputed
power-time curve. Given an imputed sequence x[n], for n =
1, · · · ,N, its frequency spectrum is computed as

X [k] =
N

∑
n=1

x[n]∗ exp
(
− j2π(k−1)

n−1
N

)
, 1≤ k ≤ N.

Let Y [k] = |X [k]|, k = 1, · · · ,N denote its magnitude.
Given M different observations corresponding to power-

time curves on M different days, in step 3 we com-
pute the dissimilarity between the power consumption pro-
files on any two days using the standard Euclidean dis-
tance measure between their frequency spectrums as δi j =[
∑

N
k=1(Yi[k]−Yj[k])2

] 1
2 . The M×M dissimilarity matrix ∆

is obtained by computing the above distance measure for all
pairs of observations.

With dissimilarity matrix ∆, step 4 uses a dimensionality
reduction algorithm such as MDS (Multi-dimensional scal-
ing) [3] to obtain a low-dimensional Euclidean embedding of
the M observations in a d� N dimensional Euclidean space
(i.e., Rd). Figure 5 demonstrates a low-dimensional embed-
ding of 33 power-time curves where d = 2.

Given this low dimensional embedding, the last step is
to compute the probability score of each observation being
anomalous. We compute these values through a k-NN (near-
est neighbor) density estimation algorithm. Note that a low-
dimensional embedding of the power data is crucial for this
step, as density estimation is known to perform poorly in a
high dimensional space due to the curse of dimensionality.

For every point y ∈ Rd in the low dimensional space, the
local density at that point can be estimated as

f̂ (y) =
k

Vol. of smallest hyper-sphere containing k NNs of y

where k is chosen to be O(M
1
d ). Given the local densities at

each of the M observations, the probability of an observation
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AUC
Meter 1 0.87
Meter 2 0.96
Meter 3 0.99

(a)

Category # of Anomalies
1 High power usage 17
2 Low power usage 8
3 Irregular Shutdown 4
4 Irregular (time) usage 6
5 Oscillatory behavior 8
6 Abnormal drop/rise 13

(b)

Figure 4. (a) Accuracy of the proposed algorithm in identifying
anomalies as measured by AUC (b) Anomaly types and number.

being an anomaly is computed as

Pr(yi is anomalous) = 1− f̂ (yi)

max j=1,··· ,M f̂ (y j)
.

Intuitively, observations in dense regions are less likely to be
anomalous and those in sparse regions are more likely to be
anomalous. Finally, this algorithm can be implemented in an
on-line fashion, enabling real-time anomaly detection.
5.2 Experimental Results

We performed anomaly detection on six weeks of data
from the 39 power meters. To validate our results, for three
meters (the main meters for Buildings 1, 2 and 3), we obtain
the ground truth by consulting with the building administra-
tor, who looked at the entire six weeks time series data and
marked potentially anomalous regions. As described above,
our algorithm assigns a probability score to each day, which
can be used to obtain a ranked list of days in decreasing order
of them being anomalous.

Given this ranked list, a building administrator could
choose a threshold k and declare the top k points as anoma-
lies for further inspection, and the remaining as normal,
where k could vary from 0 to the maximum number of points
in the input data (M). Each choice of k results in a certain
number of false positives and false negatives. For example,
when k = 0, i.e., when all the points are declared as normal,
the false positive rate (FPR) is 0 while the false negative rate
(FNR) will be 1. On the other hand, when k = M, the as-
sociated FPR is 1 and FNR is 0. Varying this threshold k
results in different values of FPR and FNR, leading to a re-
ceiver operating characteristic (ROC) curve. The area un-
der the ROC curve (AUC) defines the quality of the obtained
ranking. In the ideal case, where all the anomalous points
are ranked at the top followed by normal points, the AUC
takes the maximum value of 1. On the other hand, a random
ranking achieves an AUC value of 0.5. We use AUC as a per-
formance metric for our algorithm. Figure 4(a) demonstrates
the performance of our algorithm on 3 meters.

Further, we characterize the anomalies detected in the
39 meters by assigning them categories, as shown in Fig-
ure 4(b). Note that a particular anomaly could belong to mul-
tiple categories. Some of these categories provide an oppor-
tunity for potential energy savings, while others may indicate
device malfunction or failures. In Figure 5, we demonstrate
only 3 of the 6 categories for reasons of brevity.

The examples shown in Figure 5 offer the potential to
save energy. Figure 5(a) corresponds to the overhead light-
ing load of a floor, while Figure 5(b) corresponds to several
air handling units (AHU). The low-dimensional embeddings
obtained using MDS in both cases show clusters of normal
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Figure 5. Examples of low dimensional embedding of power data.

behavior (June 20th, July 5th, and June 16th), and points that
were detected as anomalous (circled).

For the lighting load, two anomalous points are seen: one
corresponding to low usage (category 2), which turned out to
be July 4th, a holiday; the other (June 17th) corresponding
to high and irregular usage (categories 1 and 4), where the
lights remained on all night. Detecting and correcting this
anomaly could have saved about 180 kWh over this day. The
AHU load also has a similar anomaly (June 23rd), where the
air handlers were operating until late in the night. Correcting
this anomaly could save about 450 kWh. Note that the AHU
load has multiple normal modes of operation depending on
the utilization level of the air handling capacity.

6 Occupancy Modeling
Occupancy modeling forms another important compo-

nent for efficient power management in buildings. Many
commercial buildings employ either a fixed time L-HVAC
(lighting, heating ventilation and cooling) schedule or a fixed
temperature set point schedule. This often leads to unneces-
sary conditioning of the building, especially when the ac-
tual occupancy is low. Hence, some recent work has sug-
gested occupancy-based L-HVAC scheduling for efficient
power management. However, most of this work assumes
the availability of occupancy sensors, whose installation and
maintenance may be prohibitive on a large campus. Note
that occupancy modeling, irrespective of the methods used,
has privacy implications which are outside the scope of this
paper.

On the other hand, Melfi et al. [10] propose the use of ex-
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Figure 6. (a) A hidden Markov model with hidden variable Xt and
observed variables Zt (b) Proposed 2-stage approach.

isting network infrastructure to estimate occupancy. In this
paper, we propose an implicit occupancy sensing procedure,
where we use traffic data associated with network ports in
each cube to build occupancy models. Network switches
typically maintain per port counters for the amount of in and
out flowing traffic. We retrieve this information from the
switches in the building every 30 minutes. The estimated oc-
cupancies at cube level are then used to estimate occupancy
of a zone (e.g., multiple cubes), which can further be used
for occupancy-based L-HVAC scheduling of that zone.

However, there are various challenges in modeling occu-
pancy from network activity. One of the main challenges is
the lack of labeled data. Obtaining labeled data from each
occupant is not only expensive but also raises privacy issues.
In addition, note that there are certain intrinsic limitations
with the use of network data to estimate occupancy. For ex-
ample, a cube might be occupied but the occupant may not be
using his/her computer. However, our preliminary analysis
shows that network activity is still a good feature to estimate
occupancy.

We propose two approaches to estimate occupancy from
network data. The first approach is an unsupervised ap-
proach where we use hidden Markov model (HMM) [3] to
estimate occupancy from network data. We then propose a
two-stage semi-supervised approach where the first stage in-
volves unsupervised learning using HMM followed by train-
ing a classifier using minimal labeled data. The two ap-
proaches are described in more detail next.

6.1 Methods
We first propose an unsupervised approach where we

model the problem of occupancy estimation from network
data as a hidden Markov model with binary occupancy states
as the hidden variable Xt and network data as the observed
variable Zt , as shown in Figure 6(a). We consider a simple
model where we assume that the transition probabilities and
the emission probabilities do not vary with time. As we show
in Section 6.2, this model performs fairly well.

However, the above assumptions may not hold. In fact,
it seems more appropriate to model these probabilities as a
function of other features such as time of the day, day of
the week, etc. The dependence of these parameters on such
external features is known to significantly increase the com-
plexity of HMMs, to the extent of making them intractable
on large datasets. Alternatively, we propose a novel two
stage semi-supervised approach that can efficiently incorpo-

rate the effect of external features, as shown in Figure 6(b).
In the first stage of this two stage approach, we model

the network data using HMM with k underlying states for
the hidden variable, where we choose the value of k that op-
timizes the log-likelihood function. In the second stage, we
train a classifier whose input is a feature vector consisting
of the output state of k-HMM along with other external pa-
rameters such as time of the day, day of the week, etc. This
approach remains tractable even on large datasets while ef-
ficiently incorporating the effect of any external parameters
on the occupancy.

There are two other key advantages of using this first
stage over just a supervised algorithm with network activity
as one of the inputs. The first advantage is that it significantly
reduces the labeling effort of an occupant during the training
phase, where an occupant can now provide binary labels to
the k output states of the HMM rather than providing their
occupancy logs over time. This also addresses the issue of
privacy to some extent. The other advantage of using the
k-HMM is that it significantly reduces the size of the input
feature space as k is usually very small compared to the total
number of possible states for the network data. The result of
a smaller feature space is that it requires less training data to
efficiently train a classifier.
6.2 Experimental Results

Our first experiment compares the performance of 4 dif-
ferent algorithms. The first algorithm is based on HMM
with 2 underlying states, which is a completely unsupervised
approach. The second and the third algorithms are semi-
supervised approaches using a k-state HMM as described in
Section 6.1, followed by a naive Bayes or a support vector
machine (SVM) [3] based classifier. The last algorithm is a
supervised approach which learns a classifier with input as
the network data and other features such as time of day, and
output as the occupancy state.

To quantify the estimation accuracy of these algorithms,
we collected the ground truth data from 10 different occu-
pants over a period of 16 days. The occupants maintained
their occupancy logs by marking their presence in their cube
at a time resolution of 30 minutes, where an occupant marks
his presence only if he is present for majority of that 30
minute period. The in and out flowing network data is also
collected every 30 minutes. The results of the experimental
evaluation are shown in Figure 7. Figure 7(a) compares the
average error rate of the 4 algorithms for each cube, where
the error rate is averaged over 16 different test cases. In each
test case, the last 3 algorithms are trained using 15 days of
occupancy data and tested on the left out day. Note from
this figure that the 2-state HMM in spite of being an unsu-
pervised approach performs well, with an error rate less than
15% in 8 of the 10 cubes. In addition, k-state HMM along
with SVM does marginally to significantly better than a com-
pletely supervised approach, again in 8 of the 10 cubes. Fig-
ure 7(b) compares the true occupancy of a zone comprised of
the 10 occupants with that estimated using the 4 different ap-
proaches. Note from this figure that k-HMM+SVM performs
the best, and 2-HMM, in spite of being an unsupervised ap-
proach, does well.

Our next experiment estimates the energy savings that
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Figure 7. (a) Average error rates of models. (b) Estimated occupancy
vs. ground truth.

can be obtained by using an occupancy-based lighting sched-
ule. The current lighting schedule in our building is such that
the lights are switched on as occupants arrive in the morning
and the lights of all zones on one floor (about 159 cubicles)
are set to turn off automatically at 9 pm. One of the 39 me-
ters captures the lighting load on this floor. We demonstrate
the potential energy savings by implementing an occupancy-
based schedule for switching off the lights at night, where
the occupancy is estimated using 2-HMM. The use of this
completely unsupervised approach is justified since 2-HMM
usually over-estimates the leaving time of an occupant, thus
providing a conservative estimate of the time when all the oc-
cupants in a zone would have left. Figure 8 demonstrates the
average energy savings for 13 different zones in one of the
buildings, using two approaches. The first is static schedul-
ing where for each zone, the lights are re-scheduled to turn
off based on the worst case scenario observed over all days
for that zone. This approach does not offer much savings as
there could be a rare incident where an occupant of a zone
stays till 9 pm or later. The second approach is to dynami-
cally schedule the switch-off time for lights in a zone based
on the estimated occupancy of that zone. That is, the lights
in a zone are turned off when the estimated occupancy of that
zone becomes zero. This time may vary each day. Note from
Figure 8 that this approach provides significant savings in
the lighting energy. Overall, the proposed approach provides
around 9.53% in savings for the building in consideration
whose peak lighting load is 45 kW.
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Figure 8. Percentage energy savings by using an occupancy-based
lighting schedule.

7 Conclusions
Energy efficiency in commercial buildings is important

since they are significant consumers of power, e.g., about
37% of the total electricity generated in the US. With the
broad goal of understanding the power consumption of a
campus, we collect real data and propose techniques for (1)
anomaly detection, to identify energy saving opportunities,
and (2) occupancy modeling, to better manage lighting and
HVAC. The initial results are promising. Several instances of
unusual power consumption were detected, many of which
could result in savings. Further, we discovered that an oc-
cupancy based lighting schedule on a floor could provide
average power savings of about 9.5%. Our future plans in-
clude deploying a more extensive metering infrastructure, to
enable a more complete understanding of how power (and
other resources) are used on our campus.
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