
Manish Marwah
Hewlett-Packard Laboratories,

Palo Alto, CA 94304

International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

Enhanced Server Fault-Tolerance for Improved User Experience

Shivakant Mishra
Department of Computer Science,

University of Colorado, Boulder, CO 80309

Christof Fetzer
Department of Computer Science,

TU-Dresden, Dresden, Germany D-OI062

Abstract

Interactive applications such as email, calendar, and
maps are migratingfrom local desktop machines to data cen
ters due to the many advantages offered by such a computing
environment. Furthermore, this trend is creating a marked
increase in the deployment ofservers at data centers. To ride
the price/performance curves for CPU, memory and other
hardware, inexpensive commodity machines are the most cost
effective choicesfor a data center. However, due to low avail
ability numbers ofthese machines, the probability ofserver
failures is relatively high. Server failures can in turn cause
service outages, degrade user experience and eventually re
sult in lost revenue for businesses. We propose a TCP splice
based Web server architecture that seamlessly tolerates both
Web proxy and backend server failures. The client TCP con
nection and sessions are preserved, andfailover to alternate
servers in case ofserver failures is fast and client transpar
ent. The architecture provides support for both determinis
tic and non-deterministic server applications. A prototype of
this architecture has been implemented in Linux, and the pa
per presents detailed performance results for a PHP-based
webmail application deployed over this architecture.

1 Introduction
In recent years, computing applications and services are

moving away from local desktop machines to remote data
centers. This computing paradigm is attractive for a number
of reasons: (1) It frees users from the issues and costs related
to installing, maintaining and upgrading local software ap
plications; (2) It allows easy access to applications and data
from any location (using Internet connectivity); (3) It facili
tates sharing and collaboration among multiple users who are
geographically separated; and (4) It simplifies sending criti
cal client software updates such as bug and security fixes to
the clients (client scripts can be downloaded by the browser
each time they are used). In the future, more applications are
likely to migrate to remote data centers, effectively remote
desktops that people can access via thin clients.

In order to ride the performance/cost curve for CPU,
memory and other hardware, inexpensive commodity ma
chines are most cost effective for a data center. However,

their availability numbers are low (about three nines). Thus
use of commodity machines, rather than customized, hard
ened machines, leads to more server failures and service out
ages which in tum degrades user experience and results in
lost revenue for businesses. For example, if a user is brows
ing a map service like MSN, Google or Yahoo maps, a server
failure leading to an outage of more than afew seconds is de
tectable by a user and hence degrades user experience. How
ever, if server failures can be seamlessly handled, the low
availability numbers ofa server is not an problem.

Many emerging Web applications are highly interactive
(e.g., map browsing services) or even real time (e.g., stock
market ticker). Other applications - such as word process
ing and spreadsheets - that have traditionally resided on a
desktop are beginning to be hosted at a remote data center.
In order to ensure seamless user experience, these applica
tions put greater fault-tolerance demands on data centers. At
present, server failures in Web server farms are typically han
dled as follows: 1) The client detects a server failure (usu
ally by noticing an absence of response for some period of
time); 2) The client reissues the request; 3) The re-sent re
quest likely reaches a working server; 4) The new server
handles the request. This procedure can easily take tens of
seconds if not more. It is clear that these traditional mecha
nisms for handling server failures are no longer acceptable.
In particular, application response times have a direct impact
on user experience. It was recently reported [8] that Google
has re-architected parts of its Gmail application in order to
make the application faster - "[we are] profiling all parts of
the application, shaving milliseconds off wherever we can".
While this would clearly provide a better user experience dur
ing normal operation, it does not address the problems ofpro
longed response times in case of server failures. In order to
minimize the impact of low availability commodity servers,
server failure recovery must be performed fast such that it is
seamless to the user.

In this paper, we describe the design and implementa-
tion of a Web server architecture that provides improved user
experience. In particular, it seamlessly tolerates failures of
intermediate proxies that perform content-based routing as
well as backend servers that process client requests. Fur
thermore, it provides support for handling non determinism
in server applications during server failures. To provide im
proved user experience, this architecture incorporates the fol-

1-4244-2398-9/08/$20.00 ©2008 IEEE 167 DSN 2008: Marwah et al.



International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

168

lowing important features: (1) Proxy or server failure detec
tion is performed locally at the server end that is completely
transparent to a client. This ensures a fast failure detection,
in particular when a client is connecting over a wide area net
work (WAN). Fast failure detection by a client over a WAN
is problematic as it leads to increased traffic and is prone to
false positives. (2) Failover is significantly faster - at most
a few seconds, something a client will consider a minor net
work glitch. (3) All client sessions and states are preserved
during failover resulting again in a faster and seamless recov
ery.

The complete system architecture described in this paper
is based on some of our earlier work on enhancements to
TCP splicing mechanisms [11] and systems architectures for
transactional network interfaces [12]. There are three unique
contributions of this paper. First, the TCP splicing mecha
nism is adapted for seamless backend server failover. It al
lows for transparently redirecting current and future client
requests to an alternate backend server in case of original
backend server failures. Second, concepts of request transac
tionalization, tagging and logging have been introduced and
assimilated to provide support for fast failover and seamless
recovery. Finally, a prototype of the complete system archi
tecture has been built and experimented with in both LAN
and WAN (PlanetLab) settings. Fast failover and seamless
recovery are demonstrated by deploying a real-world appli
cation (RoundCube Webmail [16], an open-source webmail
client) over this architecture.

The rest of this paper is organized as follows. Section 2
describes some of our earlier work on which this work is built
as well as some related work. Section 3 provides a high-level
description of our complete system architecture. Section 4
describes important details including TCP re-splicing, trans
actionalization and tagging, and recovery mechanisms. Sec
tion 5 describes some salient features of our prototype im
plementation. Section 6 describes the details of RoundCube
Webmail deployment over our architecture, and the perfor
mance measured from this deployment under many different
operating scenarios. Finally, Section 7 concludes the paper
and discusses some future work.

2 Background

2.1 TCP splice

Web proxies are exceedingly used in Web server architec
tures for implementation of layer 7 (or content-aware) rout
ing, security policies, network management policies, usage
accounting, and Web content caching. An application level
Web proxy is inefficient since relaying data from a client to
a server involves transferring data between kernel-space and
user-space that results in additional context switches. TCP
Splice was proposed [9, 17] to enhance the performance of
Web proxies. It allows a proxy to relay data between a client
and a server by manipulating packet header information en
tirely in the kernel. This makes the latency and computa
tional cost at a proxy only a few times more expensive than
that of IP forwarding. There is no buffering required at the
proxy that performs the splicing, and, furthermore, the end
to-end semantics of a TCP connection are preserved between
the client and the server. Advantages of TCP splicing in Web
server architectures are further described in [15, 14, 5]. The

1-4244-2398-9/08/$20.00 ©2008 IEEE

following steps are required in establishing a TCP splice:

• A client connects to a proxy. The proxy accepts the con
nection and receives the client request.

• The proxy performs authentication and other functions
as configured by the administrator, and then performs
layer 7 routing to select a backend server. It creates a
new TCP connection to the selected server.

• The proxy sends the client request to the server and
"splices" the client-proxy and the proxy-server TCP
connections.

• After the two TCP connections are spliced, the proxy
acts as a relay - the packets coming from the client
are sent on to the server, after appropriate (in-kernel)
modification of the header that makes the server believe
that those packets are part of the original proxy-server
TCP connection); similarly, the packets received from
the server are relayed to the client after appropriate (in
kernel) header modifications.

2.2 Enhancements to TCP splice

The TCP splice mechanism described above suffers from
two major drawbacks: (1) All traffic between a client and
a server (both directions) must pass through a proxy, thus
making the proxy scalability and performance bottlenecks;
and (2) this architecture is not fault-tolerant; if a proxy fails,
all the spliced TCP connections hosted on it fail as well, and
clients have to re-establish their HTTP connections and re
issue failed requests. This would be true even in the presence
of a backup proxy.

In order to address the scalability/performance bottle-
necks and fault-tolerance issues, we proposed two important
enhancements to the TCP splice mechanism [11]: (1) Repli
cated TCP splice: The splice state information is replicated
on multiple proxies allowing one TCP connection to use mul
tiple proxies. This distributed architecture provides both in
creased scalability and fault-tolerance; in fact, proxy fault
tolerance becomes trivial to implement as it only involves
detecting that a proxy has failed and then ceasing to send
packets to it. (2) Split TCP splice: The TCP splice function
ality is split into two unidirectional splices with packets in
the two directions being spliced at different machines. The
packets destined to the server are spliced at a proxy as usual,
however, response packets are spliced at the server and thus
bypass the proxy. Splicing state information is copied to the
server in order to achieve this. This further improves the scal
ability of the system particularly in cases where the response
is large.

2.3 Related work

Our architecture is most related to FT-TCP [2, 19], ST
TCP [10], Backdoors [4, 18] and other similar systems.
Unlike our architecture, FT-TCP and ST-TCP use an ac
tive backup which processes all requests sent to the primary
server. Furthermore, the applications are required to be deter
ministic. Our architecture provides greater scalability by not
requiring a dedicated backup and non-determinism is han
dled.

DSN 2008: Marwah et al.



International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

Stateless load balancers distribute incoming client pack
ets among the proxies. As its name suggests, a load balancer
is completely stateless and a packet is distributed regardless
of the TCP connection to which it may belong. This also
implies that load balancer fault-tolerance is simple to imple
ment since there is no state to synchronize. The load balancer
could also be co-resident at a layer 2 switch or an IP router.

For new connections, a proxy performs layer 7 routing and
TCP splicing, and replicates the TCP splice among all prox
ies. Once a TCP splice has been replicated, subsequent client
requests can be handled (in-kernel header transformation and
forwarding to the appropriate backend server) by any proxy
in the proxy stage. A proxy failure is trivial to handle. The
recovery action comprises a load balancer detecting that a
proxy has failed and ceasing thereafter to send any packets to
that proxy [11]. In fact, multiple proxy failures are handled
similarly. In this paper, we extend the role of proxies to as
sist in recovery from backend server failure by participating

Backdoors [4, 18] requires a specialized NIC capable of
performing remote direct memory access (RDMA). This al
lows a backup to read state information from a failed primary.
Thus, Backdoors does not work if the failure impairs the pri
mary memory, or, access to it. Our architecture can tolerate
any server failure and no special hardware is required. Fur
thermore, Backdoors requires kernel modifications on pri
mary and backup machines. Although kernel modules are
needed on logger and proxy machines, we do not require ker
nel modification in backend server machines.

3 System architecture: An Overview
Figure 1 illustrates five logical components of our Web

server architecture. Note that these are the functional compo
nents of the system. In an actual instantiation of this architec
ture, some of these components can be resident on the same
machine. The five logical components are: (1) Stateless load
balancers: Distribute incoming client requests to the prox
ies; (2) Proxies: Perform layer 7 routing, TCP splicing, and,
re-splicing during recovery; (3) Backend servers: Process
client requests, send back responses, and, asynchronously
send application session state information to alternate back
end servers; (4) Loggers: Transparently log traffic, parse re
quests and responses into tagged transactions, detect failure
of backend servers, and assist in backend server recovery;
and (5) Auxiliary servers: Additional servers that backend
servers may contact for processing client requests.

Figure 1: Components of our Web Server Architecture.

2. It assigns tags to these transactions. These tags clas
sify a transaction as deterministic/non-deterministic,
statefullnon-stateful, etc.

3. It determines the mapping of these transactions to the
TCP sequence numbers.

During normal (failure-free) operation, a client request
is spliced at one of the proxies and dispatched to a back
end server. This splice is also replicated at multiple proxies,
so that different client requests can pass through anyone of
these proxies. The failure of a proxy is simply tolerated by
detecting the proxy failure and not sending any subsequent
requests to that proxy. Tolerating proxy failures and the re
lated impact on performance has been discussed in detail in
[11]. The backend server processes the client request (may
involve zero or more aux requests) and sends the response
back. The response may be sent via a proxy (which performs
the splicing), or the backend server may itself perform the re
turn half of the splice (split TCP splice) and send it directly to
the client. In either case, the response is transparently logged
at the front-end logger (which is an IP hop on the packet's
return path). At the end of processing a request, the backend
server asynchronously pushes application session state infor
mation related to that request to an alternate backend server.
Note that the alternate server is not a dedicated backup server
and could be providing service to other clients at the same
time.

If a backend server fails in the middle of a transaction,
that transaction is re-started at an alternate backend server

in state synchronization of the alternate backend server and
finally re-splicing the client TCP connection to that server.

A client request is handled at a backend server. A backend
server can itself process a number of client requests. How
ever, it may need to contact one or more additional servers in
some instances for further processing. For example, a back
end server may need to access a shared external database,
or an email store. We refer to these additional requests as
auxiliary (aux for short) requests, and the servers that han
dle these requests as aux servers. For certain client requests,
a backend server may need to issue multiple aux requests.
In order to correlate session state information and aux re
quests/responses with the appropriate transaction, a unique
transaction ID is assigned to each transaction. This ID is
computed from the client IP address and port number of the
TCP connection and the ordinality of the transaction on that
connection.

To facilitate seamless recovery, there are two points in
the system where IP packets are logged - one is between
a proxy and a backend server, where client requests and cor
responding server responses are logged (front-end logger);
the other is between a backend server and an aux server (aux
logger), where aux requests and corresponding aux server
responses are logged. Although two different loggers are
shown in Figure 1, a single physical logger can be used for
logging at both of these locations. In addition to logging IP
packets, a logger performs a number of important functions
to facilitate seamless recovery from backend server failures:

1. It parses all client requests and server responses into
transactions.

I

Auxilary
Servers

Backend
Servers

1.1
I loggerI
Proxies I-Stateless

Load Balancer
aClient

I

1-4244-2398-9/08/$20.00 ©2008 IEEE 169 DSN 2008: Marwah et al.



International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

where the server application is already running. In addition,
the original TCP connection is un-spliced at the proxies; any
in-flight bytes saved at the front-end logger but not received
by the client are re-transmitted; and finally the original client
connection is re-spliced with the "new" backend server.

For known non-deterministic transactions, a backend
server either saves the response at an alternate server before
responding to the client, or synchronizes session state such
that the alternate backend server can regenerate the same re
sponse to the request. Unforeseen non-deterministic condi
tions are rapidly detected by the system and the client is ap
propriately informed about them.

3.1 Logging, Transactionalization and Tagging

All client bytes destined for a backend server pass through
the front-end logger. This logger is just an additional IP hop.
It does not modify the packets in any way. In addition to sav
ing the client bytes, the logger groups them into transactions
that serves the following purpose:

• Transactionalization is used to give structure to a TCP
byte stream, so that during failure recovery, an appli
cation can be re-started on an alternate (new) backend
server at a transaction boundary.

The front-end logger uses an application-specific config
uration file to determine the start and end of requests and
responses. At present, we assume that each client request/re
sponse pair is a separate transaction. For example, if the ap
plication is an HTTP server, a simple approach is to treat each
client request (e.g., a GET or a POST request) as a sepa
rate transaction. If the server application is a command shell,
each request (commands separated by a newline or a semi
colon) could be considered a separate transaction. For many
applications, grouping of multiple requests/responses into a
transaction is useful. However, that is outside the scope of
this paper.

A mapping between transaction boundaries at the appli-
cation layer and the TCP sequence number-space is required
for seamless migration of the TCP connection to an alter
nate backend server in the event of a backend server failure.
This mapping (as sequence number offsets from the initial
sequence number (ISN) of the connection) is also saved at
the front-end logger.

When a client request is transactionalized, the transaction
is also tagged with attributes. These attributes are useful dur
ing recovery in determining quickly how a particular transac
tion is to be handled at the alternate backend server, e.g., does
it have to be replayed? Some common tags are described be
low:

• Deterministic/non-deterministic: This tag indicates
whether the transaction is deterministic or not. A deter
ministic transaction is one which would produce exactly
the same response and cause exactly the same side ef
fects when it is replayed on an alternate backend server.
In other words, given the current state of an application
and an input, only one output can be produced. An ex
ample of a deterministic transaction is the UNIX com
mand 1s. If the sequence of commands that are run on
a backend server are replayed on an alternate backend
server, 1s would produce the same result. An example
of a non-deterministic command is da t e.

• Read-only/update: This tag indicates whether a trans
action changes the state of a backend server application
in any way. Read requests usually do not have any side
effects. On the other hand, write requests change the
state of the server and hence have side-effects. The Unix
command date, for example, is read-only; however,
setenv DISPLAY remotemachine:O results ~
an update of the state. On failover, a read-only trans
action need not be replayed at an alternate backend if
the response has already been generated and has either
reached the client or is saved at the front-end logger.
However, this is not true for update transactions. Con
sider, for example, a deterministic update transaction. If
a backend server crashes after this transaction has been
processed (reply sent to client) but before the corre
sponding state information is sent to an alternate server,
then this transaction must be replayed at the alternate
server.

• Idempotent/non-idempotent: An idempotent transac
tion is one that produces the same output and the same
side effects whether it is processed once or multiple
times. For instance, setting an environment variable
(setenv EDITOR emacs) is an idempotent transac
tion. Non-idempotent transactions, on the other hand,
must be executed only once, e.g., appending a value
to an existing environment variable (setenv PATH
${PATH} : /usr/ sbin). Care must be taken that non
idempotent transactions are not replayed on the alter
nate backend server if the corresponding state informa
tion has already been incorporated in the application
session state.

Assignment of tags is application specific. For each ap
plication the likely client requests and the corresponding tags
need to be specified in a configuration file. For each incom
ing request, the logger tries to match it with an internal table
(constructed from the user specification). If a match is found,
the corresponding information is used to tag the request. Oth
erwise, a default, conservative tag assignment is made to that
request.

Large files transferred by a backend server to a client are
not saved at a logger. Instead, file location information is
saved. An alternate design could be to save a cryptographic
hash (e.g., MD5) of the file and then use a mapping service
to locate the file if needed.

3.2 Synchronization and Re-splicing

The front-end logger that saves requests and responses for
a backend server also monitors that backend server for fail
ures. Failure recovery consists of synchronizing the client
TCP connection state, re-splicing the TCP connection, and
synchronizing the application state on the alternate backend
server. Synchronization of the client TCP connection state
and application state is done using two key pieces of infor
mation: (1) the last client ack saved at the logger; and (2) the
last server byte saved at the logger.

The last client ack indicates the next server byte that the
client expects, Le. it is guaranteed that all prior bytes have
been successfully received by the client. However, server
bytes between the last client ack and the last server byte

1-4244-2398-9/08/$20.00 ©2008 IEEE 170 DSN 2008: Marwah et al.



International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

logged at the logger may not have been received at the client.
So, the logger starts re-sending bytes starting from the last
client ack. While it is possible that there are in-flight server
bytes or acks, re-sending these bytes is harmless.

Synchronization of the application at the alternate back
end server involves making sure that all the application ses
sion state information sent by the original backend server be
fore failing has been applied at the alternate backend server.
If the alternate backend server has lagged behind, some trans
actions may need to be replayed during recovery. In fact,
only update transactions that change application state are re
played.

Once this synchronization is complete, the original client-
proxy connection is respliced to the proxy-alternate backend
server connection.

An issue during recovery is that if some transactions are
re-run, they may generate auxiliary requests that may not be
idempotent. Since, these requests have already run at the aux
servers before the backend server failed, it is important to
ensure that they are not re-sent to the aux servers during re
covery. To address this, a second logger (aux logger) saves
all auxiliary requests and corresponding responses. If a trans
action is replayed at the alternate backend server during re
covery and generates an auxiliary request, it is matched with
the stored requests at the logger. The corresponding logged
response is then returned without the participation of the cor
responding auxiliary server.

3.3 Application Support

Our architecture requires some (minimal) support from
the application to recover from server failures. In particular,
the backend server application needs to transfer per trans
action state information to an alternate backend server run
ning that application. Also, this state information must have
the granularity of a transaction and be applied to an already
running application on the alternate backend server. Further
more, for efficiency considerations, it is preferable that the
application maintains only session state and that long-term
persistent state is saved in auxiliary databases. Fortunately,
this is also the usual industry practice.

Another requirement for the application is the inclusion of
the transaction ID of a request within any auxiliary requests
generated. Such an ID allows auxiliary requests to be cor
related to the corresponding transactions. For example, for
auxiliary requests to an IMAP server, a transaction ID can be
part of the tag used with each IMAP command.

3.4 Non-determinism

Non-determinism implies that a request may produce a
different response each time it is processed. In the context
of synchronizing TCP connection state, non-determinism is
a problem since the backend server may crash when only a
partial response has been sent to the client. Unless the alter
nate backend server can regenerate an identical response, it
is not possible to provide the rest of the response to the client
and preserve the TCP connection state during recovery.

In our architecture, we address the issue of non
deterministic transactions in two ways. First, if it is known in
advance that a particular transaction is non-deterministic (via
non-deterministic tag), the application makes sure that before
it starts sending a response, one of the following is true: (1)

the entire response has been saved at the alternate backend
server, or (2) enough state information has been copied to
the alternate backend server so that it can produce a deter
ministic response to that request.

However, it may be hard to identify all instances of non-
determinism in an application in advance. This is because
there might be some error conditions, or some uncommon
user actions - not previously tested - that may produce non
deterministic responses. An important feature of our archi
tecture is that it can detect such conditions arising from un
foreseen sources of non determinism. This is done by com
paring the response bytes produced by the alternate backend
server with the partial response - saved at the logger - pro
duced by the original backend server before failing. If these
do not match, the transaction is clearly non-deterministic.
When such a situation is detected, the proxy sends a reset
on the client connection, terminating it immediately. This
would cause the client to reconnect and re-issue the request.
Note that although not ideal, this approach is still better than
a server simply failing, since the client is immediately noti
fied that it needs to re-establish its TCP connection. Without
this notification, it can take tens of seconds or more for a
client to detect a server crash failure.

3.5 Adaptive Failure Detection

A backend server failure detector resides on the logger
that is responsible for recording requests to and responses
from that server. A two-pronged, adaptive server failure de
tection mechanism, with different approaches for times of ac
tivity and inactivity, is used. When a server is processing re
quests, it is declared failed if it does not respond to a request
within a timeout. This timeout is dynamically computed by
the detector as it observes requests and responses. For each
kind of request, the detector maintains two timeouts based on
the moving average of the following two measurements: (1)
the time difference between receiving the entire request and
the start of the response; (2) the time difference between the
start and end of the response. Using two timeouts allows fail
ure detection to be more fine grained than using one timeout
value based on receipt of request to the end of response. Note
that no heartbeats are used in this mechanism and failure de
tection is fine grained. We feel this approach has three main
advantages over using a heartbeat mechanism: (1) there is no
network or processing overhead of heartbeats; (2) the mech
anism is adaptive and depends on the average responsiveness
of the system rather than a fixed heartbeat interval value; and
(3) the system designer does not have to pick a heartbeat in
terval value.

A low frequency heartbeat is used during idle periods.
This is useful since the system is likely to be repaired before
the next request comes in. Furthermore, the low frequency
(once every few seconds) ensures that it does not put any de
tectable load on the system.

4 Detailed Design

4.1 Normal Operation

Steps required for handling a client request are as shown
in Figure 2. Here it is assumed that the client has already
established a TCP connection spliced by a proxy to a back
end server. The proxy has also replicated the splicing state

1-4244-2398-9/08/$20.00 ©2008 IEEE 171 DSN 2008: Marwah et al.



International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

information to other proxies so that any proxy can forward
subsequent client requests [11].

o

Auxilary Server

Alternate Back-end Server

Figure 2: Sequence of steps required in handling a client request.

1. A client request is received by the backend server.

2. The backend server sends out any aux requests required
for processing the client request and waits for the corre
sponding responses.

3. If the client request changes application state ("update"
request), the updated state information is sent asyn
chronously to an alternate backend server. Note that
because of asynchronous nature of this communication,
the alternate backend server can lag behind the backend
server. So, if the transaction is non-deterministic, this
state information is sent synchronously.

4. The backend server sends a response to the client re
quest.

5. When the logger receives the entire response, it informs
the alternate backend server so that it applies that state
information to the local application. Notice that the
alternate backend server applies this state information
only after the backend server has sent out the response
and the response has been completely logged. Note that
at the user level on the backend server, it is hard to deter
mine when the response has been completely sent (since
it may remain in the TCP send buffers for some time).

p Number of response bytes (zero or more) of transaction
TL + 1 saved at the logger.

Ts Last transaction with state information applied to the ap
plication at the alternate backend server. Since the alter
nate backend server waits for the logger to completely
receive a response before applying the corresponding
state information, Ts :::; TL.

TA Last transaction whose state information is available at
the alternate backend server. Clearly, TA ~ Ts. State
associated with transactions (Ts, TA] is available at the
alternate backend server, but has not yet been applied to
the application.

TR First transaction that is run on the alternate backend
server during recovery.

Tsp First transaction that is sent over the re-spliced client
and alternate backend server connection. Clearly,
Tsp 2: TR.

AckcL Last client ack saved at the logger.

AckTL Ack corresponding to the last response byte in trans
action TL.

4.3 Failure Recovery

The following steps are involved in the failure recovery
process after a backend server has crashed. Note that al
though presented sequentially here for clarity, a number of
these steps occur concurrently.

• Logger detects a backend server failure; determines TL
and shares this information with the alternate backend
server.

• Proxy un-splices the client TCP connection with the
failed backend server; signals other proxies to do the
same.

• Alternate backend server determines Ts and TA; shares
this information with the logger.

• Synchronizing the client TCP connection. AckcL is
the last ack received from the client. Bytes are sent/re
sent to the client from this point. Bytes until the end
of transaction TL and p bytes of transaction TL + 1 are
already available at the logger. Therefore, if the follow
ing equation is true, the proxy temporarily re-splices the
client connection with a new connection to the logger in
order to send out these bytes.

Note that Equation 1 will very likely be an equality un
less there is packet loss. Usually the time taken to detect
failure - even if it is a second or less - is enough for the
client ack of the last packet sent to be received by the
logger. The client connection is re-spliced to the alter
nate backend server at transaction Tsp, which is,

4.2 Terminology

We now define some terms that are used in the failure re
covery process described in the next section. Ti refers to the
unique transaction ID assigned to each transaction. It is a 64
bit long ID consisting of client IP address, client port number
and the transaction number.

TL Last transaction with response fully saved at the logger,
Le., the backend server crashed before the completion
of transaction TL + 1.

AckcL :::; AckTL + P (1)

(2)

1-4244-2398-9/08/$20.00 ©2008 IEEE 172 DSN 2008: Marwah et al.



International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

Since p bytes of TL + 1 are already sent, the re-splicing
is performed such that the first p bytes of the transaction
are locally received at the proxy and thereafter the bytes
are spliced to the client connection. Similarly, the splice
point for bytes from the client to the server is also deter
mined based on the last client bytes that is available on
the logger.

• Synchronizing the alternate backend server. Al
though the client only needs response bytes starting
from TL + 1, the application state on the alternate server
may not be updated until TL. This could be due to
two reasons: (1) the asynchronous state updates from
the backend server lagged behind; or (2) signals from
the logger - which cause an alternate server to apply
the corresponding transaction associated state update 
lagged behind. The alternate backend server is first up
dated till Ts. It applies state information associated with
(Ts, TR) and starts executing transactions at TR, which
is determined as follows.

T = {TA + 1 if TL ~ TA (3)
R TL + 1 otherwise

Note that replay of transactions [TR' TL] is done intel
ligently; read-only transactions are not replayed. The
client requests for [TR,TL] and potentially TL + 1 are
supplied by the logger on the proxy-alternate server
connection. Note that if a request is substantial in size,
for instance, it is an HTTP POST request to transfer
a large file, the proxy can splice the logger-proxy and
proxy-alternate server connections.

• As mentioned earlier, the aux logger saves any aux re
quests and responses; an aux request carries a unique
transaction ID which can be used to correlate it to a
particular transaction. For the replay of transactions
[TR,TL] and potentially partial replay of TL + 1, any
aux requests are responded to by responses cached at
the aux logger.

Note that in practice, the two loggers, backend server and
alternate backend server most likely reside on the same LAN.
Hence, TL = Ts = TA is the most likely scenario, in which
case only one transaction, TL + 1, is replayed.

5 Implementation
We implemented a prototype of our server fault-tolerance

architecture in Linux. We had earlier made some enhance
ments to TCP splice [11] to make it distributed and fault
tolerant. We further extended the TCP splicing functionality
to perform re-splicing. This is implemented as a Linux ker
nel module and installed at a proxy. We enhanced our log
ger [12] to transparently log TCP connections and make the
logged bytes available to a user-space transactionalizer and
tagger. Finally, a recovery manager that resides at a proxy
was added to coordinate recovery.

Netfilter. We made extensive use of netfilter [13] in both
the kernel modules: logging module (logmod) and TCP
splicing module (t cpspmod). Netfilter adds a set of hooks

along the path of a packet's traversal through the Linux net
work stack. It allows kernel modules to register callback
(CB) functions at these hooks. These hooks intercept packets
and invoke any CB function that may be registered with that
hook. After processing a packet, a CB function can decide to
inject it back along its regular path, or steal it from the stack
and send it elsewhere, or even drop it.

Logging kernel module. The logging module uses user-
space memory that is mapped into the kernel. A user
process sends a user-space memory pointer to the logging
module using a system call. The kernel module calls
get_user_pages () to map that memory into kernel-space
memory pages. This allows it to log TCP segments on to
memory that becomes visible to a user process without any
kernel-to-user space copying. The module needs to take spe
cial care to detect and correctly log re-transmissions and
out of sequence packets. Furthermore, since both the ker
nel module and a user-space process are accessing the same
piece of memory, appropriate synchronization mechanisms
are used to avoid race conditions. Since the memory allo
cated for logging is limited, the log wraps around on reaching
the end of allocated space.

User-space Transactionalizer & Tagger The transac
tionalizer and tagger interacts with the logging module to
obtain access to the memory where TCP stream data is be
ing logged. Using application specific information, it eagerly
parses the byte stream into transactions. Note that although
transaction information is only needed if there is a failure,
parsing the stream lazily - as needed on failure - is prob
lematic since the log may wrap around. Each transaction is
given a transaction ID and tagged. Tagging requires applica
tion specific knowledge as discussed in Sections 3.1. It also
maintains a mapping of the TCP sequence number offsets to
Transaction IDs. Furthermore, it communicates with the re
covery manager at the proxy and with the alternate backend
server during failure recovery.

Recovery manager. The recovery manager is a user-level
process that resides at a proxy and is responsible for coor
dinating the failure recovery once a backend server failure
is detected. It instructs the TCP splicing module to suspend
the splice to the failed backend. It communicates with the
transactionalizer and tagger to obtain the appropriate offsets
when the backend crashes. Furthermore, it supplies the TCP
splicing module with those offsets to perform re-splicing.

6 Experiments and Performance Evaluation
To provide a proof of concept, we demonstrate our archi

tecture on a real-life Web mail application called Roundcube
webmail [16], an open-source webmail application written in
PHP programming language. Hosted at a data center, this ap
plication provides service similar to that provided by Google
Mail, Yahoo Mail, or Microsoft's Hotmail. Users can con
nect to it via Web browsers. Roundcube Web server uses
IMAP [6] to connect to the email store servers. Compared
to traditional webmail clients, Roundcube and other similar
AJAX-based [1] Web applications have a more responsive
user-interface.

We conducted a series of experiments to evaluate the ef
ficacy of our architecture in terms of providing an improved
user experience during a server crash failure. The main goals
of the experiments were: (1) Measure failover times with

1-4244-2398-9/08/$20.00 ©2008 IEEE 173 DSN 2008: Marwah et al.



International Conference on Dependable Systems &Networks: Anchorage, Alaska, June 24-27 2008

The experimental setup is shown in Figure 3. At the server
end, the machines are attached to two Ethernet switches and
span two subnets. The proxy, logger and the auxiliary server
(which acts as an IMAP server) reside on 10.0.1.0/24 sub
net. This subnet is connected to the public Internet through
a GW machine. The logger and backend servers are part of
the 10.0.0.0/24 subnet. Note that the logger is dually homed
and is a gateway between the two subnets. This allows it
to conveniently log packets between both the backend server
and a client, and the backend server and the auxiliary server.
Since the machines are on private subnets, the WAN clients
connect to it through s sh tunnels between the client and the
GWmachine.

our architecture; (2) Measure the overhead of our architec
ture during normal operation; (3) Compare failover times ob
tained with our architecture to those obtained with commonly
used current server fault-tolerance techniques; and (4) Eval
uate our system with clients connected over networks with
diverse characteristics.

We conducted experiments in both LAN and WAN set
tings. The backend servers, proxy and logger that we used
are attached to the same LAN on the campus network of the
University of Colorado at Boulder. To test under a LAN
environment, a client application was installed on a ma
chine connected to the same LAN. In order to run our ex
periments over diverse WAN links, we used PlanetLab [3]
nodes as our testbed. We placed the client on three dis
tinct sites: (1) WAN-MIT: a PlanetLab node at MIT (planet
lab7.csail.mit.edu); (2) WAN-SG: a PlanetLab node in Singa
pore (planetlab3.singaren.net.sg); and (3) WAN-IN: a Plan
etLab node in India (planetlab l.iitr.ernet.in). These locations
were chosen because they provide a wide variety of round
trip times (RTT) between the server in Colorado and its peer.
The RTT is about 79 ms to the machine at MIT, and about
260 ms to the one in Singapore. The RTT to the node in In
dia is extremely large at about 886 ms. Compared to these,
the RTT for the LAN scenario is about 0.25 ms.

6.1 Experimental Setup

Alternate
Server

planetlabl.iitr.ernet.in

Figure 3: Experimental setup.

Action GET POST
PHP File Downloads
script CSS JavaScript images

Login screen 1 1 2 4 0
Logging in 2 1 1 28 1

Reading msg 2 1 1 4 0
Sending msg 3 0 0 1 1

Table 1: Common actions in Roundcube and the corresponding
HTTP GET and POST requests. For the GET requests, the num
ber of times a PHP script is invoked at the server, and, the number
of CSS, JavaScript and images files that are download by a Web
browser are also listed.

6.2 Experiments

Users connect to webmail using HTTP through a Web
browser. User actions such as logging in, reading and send
ing email are translated into HTTP GET and POST requests
by the browser as shown in Table 1. For our experiments,
we chose common actions that users are likely to take while
checking their email. Furthermore, we chose both read-only
and update actions.

We picked two actions that were used for all our experi
ments. The first is a simple one: displaying the login screen.
The second is a more complex operation: it consists of a user
logging in, composing an email, sending it out and, finally,
logging out. We experimented with several other user actions
as well and these two are well representative of the lot since
they have a mix of read-only and update operations.

In order to be able to send these requests repeatedly, mea
sure the time taken, and cause a failure when a request is
in progress, we used a 'C' program instead of a browser as
the client for our experiments. We performed both the above
actions and used ethereal [7] to record the requests sent
out by the browser and the responses received. To make sure
that our program operated identically to a browser, we sent
these recorded requests to the Web server. We also matched
the responses received to the recorded ones to ensure correct
ness. Furthermore, the program parsed the received response
header in order to correctly receive the body of the response.
The webmail application assigns a session ID and sends it as
a cookie when a user logs in. This ID needs to be sent with
all subsequent requests in that session. This was another ca
pability that we added to our client program.

Action 1: Displaying the login screen. This action con
sists of eight GET requests in all. About half are requests
for images displayed on the login screen. One is an exe
cution of a PHP script and others download JavaScript and
CSS scripts. For our experiments, we assume that the images
are already cached at the client and issue the remaining four
GET requests. Each run consists of the client establishing a
TCP connection on port 80 and repeating these four GET re
quests 30 times. (Actually they are repeated 31 times and the
first set is ignored to minimize the impact of startup cost and
cache misses.) We perform the experiments under four dif
ferent network settings: with the client on the same LAN as
other machines; and with the client at WAN-MIT, WAN-SG
and WAN-IN. For each of these network settings, we per-

1-4244-2398-9/08/$20.00 ©2008 IEEE 174 DSN 2008: Marwah et al.



International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

form experiments for four different scenarios: (1) no failure
and without the infrastructure required for our architecture;
(2) server failure and traditional server fault-tolerance sup
port implying that the client detects server failure through a
heartbeat mechanism and reissues the failed request (which
then is processed by an alternate backend server); (3) no fail
ure but with our architecture infrastructure deployed; and (4)
server failure with our fault-tolerance mechanism in place.
Furthermore, each run is repeated at least three times and the
average taken.

Action 2: User email session. This action mirrors the
following user interaction. It starts with the user logging
in. The INBOX folder is displayed with new messages, if
any. The user then hits 'Compose' and drafts an email.Fi
nally, the user sends out the email and logs out. This action
consists of tens of requests, a large percentage of which are
GET requests to download icons and images. There are also
two POST requests: (1) for logging in the user; and (2) for
submitting the user's email to the Web server. Again, we
assume that the images are already cached and do not is
sues those requests in our experiments. Each run consists
of nine GET requests and two POST requests which are re
peated three times, that is, three email sessions are created
and three emails sent out. Again, the experiments are re
peated for four different network conditions and for the four
scenarios described above for Action 1.

6.3 Results and Discussion

The results of our experiments for Action 1 and Action 2
are summarized in Tables 2 and 3, respectively. They list the
average times taken for a run (consisting of 30 sets of four
requests for Action 1 and 3 sets of 11 requests for Action
2) under diverse network and architectural scenarios. The
key measurements to note are the failover times which are
differences between the time taken during a failure-free run
and a run with a server crash failure. Since we are interested
in the user experience during server failure recovery, a large
failover time - leading to degraded user experience - is un
acceptable. The failover times using our architecture are all
under about 3 seconds, with the exception of WAN-IN which
is discussed later. For Action 1, conservative failure detec
tion parameters are used and failure detection times of 1-2
secs were observed. These can be made even shorter since
the logger and backend server are on the same LAN. For Ac
tion 2, more aggressive values were used and failure detec
tion times of around 500ms were observed. One trend to
notice in the results for both Action 1 and Action 2 is that the
failover times tend to increase with increase in RTT times be
tween the client and the server. We believe this is so because,
on failure, the proxy establishes a new TCP connection with
the alternate backend server. For congestion avoidance, this
new TCP connection performs slow start which takes longer
for a larger RTT.

The failover times also depend on the exact point of oc
currence of the failure. A server failure can occur: (1) in
between two transactions; (2) in the middle of a request; (3)
in between a request and its response; and (4) in the mid
dle of a response. During our experiments, backend server
failure is caused by disabling the server's network interface
a random time interval after starting the client. Most times
the failure occurs in between a request and its response, that

1-4244-2398-9/08/$20.00 ©2008 IEEE 175

is, the request is received but no response is generated yet.
It took many runs to find an instance where failure occurred
in the middle of a response. Considering that most replies in
our experiments are short, the failover time was not very dif
ferent from the other cases, however, it did provide us with
more confirmation that our recovery manager and TCP re
splicing code are correctly implemented. We believe that for
large replies, especially if a failure occurs towards the end
of the response, our architecture will be very effective. In a
few instances, we were able to cause a failure in between two
transactions. This leads to slightly faster recovery as replay
of a failed request is not required.

The failover times for a traditional architecture are also
listed in the two tables. As described earlier, a traditional
system is assumed to be not client transparent and the client
detects failure using a heartbeat mechanism. The heartbeat
values used for LAN, WAN-MIT, WAN-SG and WAN-IN
were Is, 5s, lOs and 20s respectively. Failure is declared if
three heartbeats are missed and thus take between two and
three times the heartbeat interval value. For traditional archi
tecture, failure detection is a major part of the failover time,
especially for WAN connections, since a very high frequency
heartbeat is not practical. In our architecture, failure detec
tion occurs locally at the server and server failures can be
aggressively detected, irrespective of client location. Our ar
chitecture's overhead during normal operation is listed in the
last column of the results tables. These values are low - with
the maximum being 2.6% for Action 1. Although a bit higher
for Action 2, the overhead values are still low.

The results for WAN-IN are peculiar and different from
clients at other WAN locations: the average overhead due to
our architecture for WAN-IN is negative; failover time is high
for Action 1, but seems low for Action 2. We believe this
is due to temporal variations in the network characteristics
of the link while we were conducting the experiments. The
RTT, in addition to being very high also has a large mean
deviation of close to 100 ms, as measured using ping.

We encountered two potential instances of non
determinism while running our experiments: (1) a date
field in the HTTP response header; and (2) a "keepalive"
field in the HTTP header indicating the number of subse
quent requests that can be sent on the same TCP connection.
Both of these have simple fixes. The date field has a fixed
length and thus does not cause any problems at the TCP
layer. Furthermore, it would be an issue at the application
layer only if the date is partially sent when a backend server
fails. In practice, this is a very unlikely scenario since the
date is in the first few bytes of the response header and is
most likely to be sent atomically. In a pathological scenario,
where this is not true, any non-determinism that occurs will
be detected by our architecture. The keepalive field is a
problem at the TCP layer since its size is not fixed. However,
its impact at the application layer is inconsequential. Making
the length of this field constant in the HTTP header will be a
simple fix to this problem and remove the non-determinism
at the TCP layer. In our experiments, we configured the
HTTP server to not restrict the number of requests on a TCP
connection and thus this field was absent from the HTTP
header.

We also found that for all our experiments TL = Ts = TA

DSN 2008: Marwah et al.



International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

Average Time Taken (sec)
Traditional Architecture Our Architecture Overhead during

No-Failure With Failure Failover No-Failure With Failure Failover Normal Operation
LAN 3.34 6.44 3.10 3.37 5.10 1.73 0.03 (0.89%)
WAN-MIT 23.0 35.9 12.9 23.6 25.10 1.50 0.6 (2.6%)
WAN-Sa 68.1 105.5 37.4 68.5 71.45 2.95 0.4 (0.58%)
WAN-IN 299.2 373.5 74.3 297.7 314.7 17.0 (1.5)

Table 2: Time taken for performing one run of Action 1: Connecting to the login screen.

Average Time Taken (sec)
Traditional Architecture Our Architecture Overhead during

No-Failure With Failure Failover No-Failure With Failure Failover Normal Operation
LAN 3.72 6.69 2.97 3.83 4.77 0.94 0.11 (2.9%)
WAN-MIT 7.34 20.8 13.46 7.50 8.95 1.45 0.16 (2.17%)
WAN-Sa 15.74 45.8 30.06 16.9 20.41 3.51 1.16 (7.3%)
WAN-IN 70.84 128.78 57.94 73.91 72.78 1.13 3.07 (4.3%)

Table 3: Time taken for performing one run of Action 2: Logging in; drafting and sending an email; and, logging out.

(using terminology from Section 4.2). Furthermore, AckcL
always corresponded to the last server bytes saved at the
logger. From the log messages of the logger, we noticed
that there were only a couple re-sent packets implying that
very few packets were dropped or delayed during our exper
iments; and there were no out-of-order packets received.

7 Conclusions
Server fault-tolerance assumes great significance in the

light of explosive growth in emerging Web-based applica
tions hosted at data centers. If server failures can be seam
lessly and client-transparently tolerated, businesses can de
ploy cost-effective, commodity servers at data centers. In
this paper, we presented a TCP splice-based server fault
tolerance architecture particularly aimed at reducing failover
times to provide improved user experience during server fail
ure recovery. The main components of our architecture are
logging, transactionalization and tagging of user requests and
responses, connection synchronization and re-splicing. We
also address non-determinism and use adaptive failure detec
tion. We have implemented a prototype of our architecture
in Linux and demonstrated its effectiveness by deploying it
with a real-life webmail application. For our experiments,
LAN and WAN (using PlanetLab nodes) clients were used to
issue common webmail actions, backend server failure was
caused in the middle of request processing, and the failover
times were measured. The results showed that the failover
time is at most a few seconds even for clients connected over
a WAN in contrast to traditional server fault-tolerance tech
niques where such failure detection itself can take tens of
seconds.

References
[1] Ajax, http://wikipedia.org/ajax.

[2] L. Alvisi, T. Bressoud, A. EI-Khashab, K. Marzullo, and D. Zagorodnov. Wrap
ping server-side TCP to mask connection failures. In Proceedings of Infocom
2001, April 2001.

1-4244-2398-9/08/$20.00 ©2008 IEEE 176

[3] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler, S. Karlin, S. Muir, L. L.
Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating systems support
for planetary-scale network services. In NSDI, pages 253-266. USENIX, 2004.

[4] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode. Remote repair of
operating system state using backdoors. In Proceedings of The International
Conference on Autonomic Computing (ICAC-04), 2004.

[5] A. Cohen, S. Rangarajan, and 1. H. Slye. On the performance of tcp splicing
for url-aware redirection. In USENIX Symposium on Internet Technologies and
Systems, 1999.

[6] M. Crispin. Internet Message Access Protocol - Version 4, Revl. Request For
Comments 2060, Internet Engineering Task Force, 1996.

[7] Ethereal, http://ethereal.com.

[8] Gmail Blog, http://gmailblog.blogspot.com/2007/1 O/code-changes-to-prepare
gmail-for.html.

[9] D. A. Maltz and P. Bhagwat. MSOCKS: An architecture for transport layer mo
bility. In Proceedings ofINFOCOMM'98, March 1998.

[10] M. Marwah, S. Mishra, and C. Fetzer. TCP server fault tolerance using connec
tion migration to a backup server. In Proceedings ofIEEE Int. Conf on Depend
able Systems and Networks, San Francisco, June 2003.

[11] M. Marwah, S. Mishra, and C. Fetzer. Fault-tolerant and scalable tcp splice and
web server architecture. In SRDS, pages 301-310. IEEE Computer Society, 2006.

[12] M. Marwah, S. Mishra, and C. Fetzer. Systems architectures for transactional net
work interface. In 10th IEEE High Assurance Systems Engineering Symposium,
Dallas, TX, Nov. 2007.

[13] Netfilter, http://www.netfilter.org.

[14] M.-C. Rosu and D. Rosu. An evaluation of TCP splice benefits in web proxy
servers. In www, pages 13-24, 2002.

[15] M.-C. Rosu and D. Rosu. Kernel support for faster web proxies. In USENIX
Annual Technical Conference, General Track, pages 225-238, 2003.

[16] Roundcube webmail, http://roundcube.net.

[17] O. Spatscheck, J. S. Hansen, 1. H. Hartman, and L. L. Peterson. Optimizing TCP
forwarder performance. IEEE/ACM Transactions on Networking, 8(2):146-157,
2000.

[18] F. Sultan, A. Bohra, I. Neamtiu, and L. Iftode. Nonintrusive remote healing using
backdoors. In Proceedings ofFirst Workshop on Algorithms and Architectures
for Self-Managing Systems, 2003.

[19] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. Bressoud. Engineering fault tol
erant TCP/IP services using Ff-TCP. In Proceedings ofIEEE Int. Conf on De
pendable Systems and Networks, San Francisco, June 2003.

DSN 2008: Marwah et al.


