
Probabilistic Performance Modeling
of Virtualized Resource Allocation

Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin Arlitt, and Zhikui Wang
HP Laboratories

1501 Page Mill Road
Palo Alto, CA

{firstname.lastname}@hp.com

ABSTRACT
Virtualization technologies enable organizations to dynamically
flex their IT resources based on workload fluctuations and
changing business needs. However, only through a formal
understanding of the relationship between application
performance and virtualized resource allocation can over-
provisioning or over-loading of physical IT resources be avoided.
In this paper, we examine the probabilistic relationships between
virtualized CPU allocation, CPU contention, and application
response time, to enable autonomic controllers to satisfy service
level objectives (SLOs) while more effectively utilizing IT
resources. We show that with only minimal knowledge of
application and system behaviors, our methodology can model the
probability distribution of response time with a mean absolute
error of less than 6% when compared with the measured response
time distribution. We then demonstrate the usefulness of a
probabilistic approach with case studies. We apply basic laws of
probability to our model to investigate whether and how CPU
allocation and contention affect application response time,
correcting for their effects on CPU utilization. We find mean
absolute differences of 8-10% between the modeled response time
distributions of certain allocation states, and a similar difference
when we add CPU contention. This methodology is general, and
should also be applicable to non-CPU virtualized resources and
other performance modeling problems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques; G.3
[Probability and Statistics]: Probabilistic algorithms; I.6.5
[Simulation and Modeling]: Model Development – Modeling
methodologies;

General Terms
Performance, Theory

Keywords
Performance modeling, quantile regression, probability theory.

1. INTRODUCTION
A recent focus on reducing the economic costs of information
technology (IT) motivates increased resource sharing and “on-
demand” computing. Towards this, virtualization technologies enable

 IT resources to be dynamically allocated among multiple
applications. Such a model empowers organizations to flex their
computing resources based on workloads and business needs, and
hence improve the efficiency of IT operations. To achieve this
goal, a key task is to leverage virtualization technologies to
increase the effective utilization of IT resources. A specific
problem within this area is how to minimize the allocation of
server resources to an IT service (or application), while satisfying
Service Level Objectives (SLOs). This objective requires a clear
understanding of the impact on application performance of
different virtual machine (VM) resource allocations and
contention states, and development of performance models that
accurately capture these relationships. This is difficult in practice
due to the follow challenges.
First, while many previous research efforts have developed
performance models and addressed resource allocation, most of
them have focused on physical servers [3][5][8][10]. A virtual
machine differs from a physical server in that its effective
capacity varies with dynamic resource allocation (e.g., CPU
shares), which can significantly change application performance.
Further, multiple applications sharing the same physical resources
may compete with one another for the resource in complicated
ways. As a result, the models derived for physical servers may not
be directly applied to virtualized server environments.
Second, application performance can be affected by many factors,
including resource allocations, workload variations, and
application and system behaviors. Many of these factors fluctuate
randomly over various time scales, such as request arrival
processes, transaction mixes, CPU scheduling, cache misses, and
concurrency locking. Directly measuring and modeling these
factors requires intimate knowledge of the applications and the
systems, as well as invasive instrumentation. Even when
technically possible, it is time consuming and often economically
infeasible, due to the variety and complexity of modern IT
application architectures like multi-tier and Service Oriented
Architectures (SOA). Nevertheless, these hidden factors can still
affect application performance to varying degrees, and capturing
their effects without measuring them is a challenging problem.
Lastly, a key goal of the SLOs is to ensure appropriate
performance of the corresponding IT service. Most previous work
has looked only at average performance (e.g., mean response
time). However, average performance guarantees are not
sufficient for many applications, in particular interactive ones.
Instead, providers of such services prefer percentile performance
guarantees [18], such as that 95% of end users receive response
times below an agreed upon threshold.
As a solution, we propose probabilistic performance modeling, in
which we model the probability distribution of an application
performance metric conditioned on one or more variables that we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’10, June 7–11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0074-2/10/06...$10.00.

99

can measure or control, such as system resource utilization and
allocation metrics. We consider the influence of hidden factors
that we cannot readily measure to be implicit in the probability
distribution of performance. This is a valid assumption as long as
there is no significant change in the probabilities of those factors.
With a probabilistic model, we can calculate the probability of
satisfying a percentile performance requirement, given knowledge
of the conditional variables during a particular time interval.
Our work provides three main contributions. First, we describe a
general methodology for constructing probabilistic performance
models that requires little special knowledge of the application.
Second, we demonstrate the validity of our methodology through
experiments in virtualized environments across a range of
resource allocation and contention states. We show that our
methodology can model the probability distribution of response
time with a mean absolute error of less than 6% when compared
with the measured response time distribution, even for the most
challenging of our test cases. Third, we apply these models to case
studies that investigate the impact of CPU allocation and
contention on application performance when we correct for
differences in CPU utilization. Our results show that allocation
and contention do have statistically significant effects.
Furthermore, our case studies illustrate how probabilistic models
might be applied to other performance-related problems.
The remainder of the paper is organized as follows. Section 2
defines our problem. Section 3 explains our methodology. Section
4 describes our test bed and applications, and Section 5 provides
our experimental results. Section 6 discusses related work. Section
7 concludes the paper with a summary of our work and a list of
future directions.

2. PROBLEM STATEMENT

2.1 Background and Assumption
We consider a virtualized environment where applications are
hosted by a common pool of virtualized server resources. Each
application consists of several interacting components, each of
which runs in a virtual machine (VM) hosted on a physical server.
As an example, consider a 3-tier application with a web tier,
application tier and a database tier. Each tier runs in an individual
virtual machine, and they can be placed on the same physical
server or distributed across different servers. Autonomic
controllers can dynamically adjust this layout using VM live
migration. Controllers can also dynamically adjust resource
sharing by the virtual machines, including their allocation of CPU,
disk, and network I/O. Given a specific application and workload,
the performance is affected by the resources allocated to the
virtual machines hosting the application, as well as less readily
observable factors like system scheduling, cache misses, and
interactions between application components. Although we do not
explicitly consider these hidden factors, they do have an effect on
the probability distribution of a performance metric like response
time, and some of them may be partially correlated with the
variables that we do consider in our model. It is important to
collect enough data to capture the fluctuation patterns of these
hidden factors, such as non-stationary transaction mixes [5].
Significant changes in their probability distributions can
invalidate a probabilistic performance model, although this can be
fixed by periodic online training of new models.
Though multiple system resources can affect performance,
adjusting a virtual server’s CPU allocation is the most mature

resource control option available in today’s virtualization
technology. In the following discussion, we assume that CPU is
the only resource to be dynamically allocated among virtual
machines. We further assume that the VM scheduler employs a
capped mode, such that a virtual machine cannot use more than
the CPU time allocated to it. This assures a straightforward
guarantee on resource allocation and provides good performance
differentiation between applications sharing physical resources.
Another assumption that we make to simplify our experimental
results is that all three tiers always have the same CPU allocation,
but our approach is general and removing this assumption is a
straightforward extension of our work. Finally, we assume that the
only specific knowledge we have about an application is how to
monitor its response time and how to locate the VMs hosting its
components.

2.2 Problem Definition and Formulation
For convenience, Table 1 summarizes the notation that we use in
this paper.

Table 1: Notation
N Number of data points or observations
D Number of variables x under consideration
M Number of bins for discretizing each variable x
α, a CPU allocation, a is discretized index
uweb, i Web tier CPU utilization, i is discretized value
uapp, j Application tier CPU utilization, j is discretized value
udb, k Database tier CPU utilization, k is discretized value
c CPU consumption (c=ua)
τ, t Response time metric, t is discretized value
Τt Upper bound of discretized response time t: Τt-1 < τ ≤ Τt
q Quantile
r Index for a set of quantiles {q}
Τq() Quantile model of response time for quantile q
ψ Observed percentage of data points ≤ some value of Τ

To avoid confusion in terminology, we define a few concepts used
throughout this paper. We use resource allocation α to refer to the
percentage of a physical resource capacity (e.g., CPU) that is
allocated to a virtual machine. Resource consumption c is the
actual percentage of the physical resource consumed by a virtual
machine during a given time interval. We define the resource
utilization u of a virtual machine as the ratio between its resource
consumption and resource allocation: u=c/α. For example, if a
virtual machine consumes 20% of CPU capacity and is allocated
40%, then its CPU utilization is 50%.
As case studies for our probabilistic performance modeling
methodology, we consider the questions of whether and how
virtual machine CPU allocation affects the probability distribution
of application response time. Although it appears obvious that the
answer to the first question is yes, we must be careful to
distinguish between the effects of CPU allocation and utilization
on application performance. Queuing theory has firmly
established a monotonically increasing relationship between the
utilization of an available resource and its response time. In other
words, response time is a function of CPU utilization, and
utilization is defined relative to allocation. Since autonomic
controllers can dynamically modify resource allocation in
virtualized environments, and queueing theory suggests that a
good heuristic for these controllers to maintain acceptable
application performance is to strive for a particular utilization
target, the question of interest is how allocation directly affects
response time if the probability distribution of utilization is fixed.

100

We consider this problem from a probabilistic perspective. The
CPU consumption of an application component changes from one
measurement interval to the next, due in large part to random
fluctuations in mix and interarrival times of transactions. If we
double CPU allocation between measurement intervals, we cannot
expect the CPU utilization in the next interval to be half of what it
was in the previous interval. A more accurate expectation is that
the probability distribution for CPU utilization will be scaled by a
factor of ½ relative to what it was in the previous interval, as we
show in Section 5.1. Even this might be an oversimplification if
we consider that changing the allocation of one application
component while leaving the other components unaffected could
result in coupling effects that changes the joint distribution of
CPU utilization for all application components in complex ways,
but in this paper we only consider the same allocation at every
tier. Response time also has a probabilistic relationship with CPU
utilization, because of the factors discussed in Sections 1 and 2.1.
In this probabilistic performance modeling approach, we consider
the joint distribution of response time, CPU utilization, and
allocation derived from readily measureable data.

We consider a five dimensional state space for this problem
(D=5), because it involves five metrics: response time τ, CPU
allocation α, and CPU utilization at each of three tiers (uweb, uapp,
udb). We simplify this problem by assuming that all three tiers
have the same CPU allocation at any given time, which is why
there is only one CPU allocation metric rather than three.
Furthermore, we examine four distinct values of allocation: 100%,
70%, 40%, and 25%. Note that these values were chosen to
roughly cover the allocation range. Additional allocation values
and combinations across tiers will be explored in future work.
We discretize the variables using fixed-width binning. For any
given metric x (e.g., web tier CPU utilization), equal width
binning divides the variable range into M sub-ranges of the same
size, and assigns a discrete value d to a continuous value x.

 maxmin
minmax

min , xxx
xx

xx
Md ≤<⎥

⎥

⎤
⎢
⎢

⎡

−
−

⋅= (1)

xmin and xmax are set to selected low and high percentiles of the
variable x; we indicate these ranges for each analysis in Section 5.
We discard data points outside the range (xmin,xmax], but an
alternative approach to handle outliers would be to extend the
ranges of the first and last bins to (-∞,xmin] and [xmax,+∞),
respectively.
If we assume the same number of bins M in each dimension, then
the total number of bins for a full joint distribution is MD=M5.
Since we are considering only four values of allocation, this is
actually 4M4, but it is easy to see that this number grows
exponentially with an increase in either M or D, so we must
carefully select the granularity of our analysis M and the number
of metrics D that we wish to consider.
As previously discussed, we are interested in the dependency
between CPU allocation and response time. Our approach is to
characterize response time as a probability distribution
conditioned on allocation: p[t|a], where t and a are the discretized
variables for response time and allocation, respectively. As shown
in equation (2), it is straightforward to derive an expression for
p[t|a] using basic rules of probability and marginalizing, or
summing out, the utilizations. The notations i, j, and k are the
discretized variables for uweb, uapp, and udb, respectively. We call
the first component of equation 2, p[t|a,i,j,k], the conditional

performance model, and the second component, p[i,j,k|a], the
joint utilization distribution for a given allocation.
This expression for p[t|a] can be further summed to compute a
cumulative probability distribution, for example, to estimate the
probability that response time is less than or equal to a specified
threshold, as shown in equation (3). Note that we use lower-case
p[] to indicate a probability distribution, upper-case P[] for a
cumulative distribution, and d as a summation index for t.

∑∑∑

∑∑∑

∑∑∑

= = =

= = =

= = =

⋅=

⋅⋅
=

==

M

i

M

j

M

k

M

i

M

j

M

k

M

i

M

j

M

k

akjipkjiatp

ap
apakjipkjiatp

ap
kjiatp

ap
atpatp

1 1 1

1 1 1

1 1 1

]|,,[],,,|[

][
][]|,,[],,,|[

][
],,,,[

][
],[]|[

 (2)

∑∑∑∑

∑

= = = =

=

⋅=

=Τ≤

t

d

M

i

M

j

M

k

t

d
t

akjipkjiadp

adpaP

1 1 1 1

1

]|,,[],,,|[

]|[]|[τ

 (3)

An intuitive approach to estimating the conditional performance
model is to count the corresponding instances in the data. This
approach has two main drawbacks: (1) it is not scalable since the
required amount of data N grows exponentially with an increase in
the number of variables D (the so called curse of dimensionality
[23]); (2) even when data is sufficient, it may not be uniformly
distributed over the state space of all relevant variables, resulting
in pockets where the sparseness of data renders invalid the
probability computed there.
Quantile regression [1] is a simple alternative that does not rely on
exhaustive counting to determine the conditional performance
model, and thus avoids the need to restrict M and D solely
because of the number of data points N. Its drawback is that it is a
parametric method for which we must specify a functional form
that might not exactly match the underlying relationships in the
data. However, we find the error to be acceptable for the
performance data we modeled (see Section 5.2). Although non-
parametric quantile regression techniques exist [1], which
partition the input space and perform local fitting, they are prone
to overfitting. We discuss the details of quantile regression
modeling in Section 3.4.

3. METHODOLOGY
In this section, we present a generalized methodology that can be
fully automated for deriving probabilistic performance models.
This process comprises five steps, which are depicted in Figure 1.

Figure 1: Automatic model generation and evaluation process.

101

3.1 Data Collection
We employ monitoring agents to periodically collect CPU
consumption and allocation values for each virtual machine in
which an application component is running. We also deploy a
performance monitor to measure the client-side response time of
each individual transaction. Our measurement interval is 1 second.
We describe our test bed in more detail in Section 4.

3.2 Data Preprocessing
Since application components are executed on different physical
servers in most test cases, we keep the clocks on the servers
synchronized. However, the sampling are not synchronized which
can cause the measurement timestamps on difference servers to be
off from each other by as much as half a measurement interval. In
this work, we employ a simple moving average technique to
increase the effective size of the measurement interval, and to
reduce the relative synchronization error. We note that increasing
the effective size of the measurement interval might not always be
desired and that other techniques like linear interpolation could
also synchronize the data. For each trace in our implementation,
we calculate a ten second moving average that slides forward in
one second increments, reducing the synchronization error to 5%
or less.
Our performance metric is the 95th percentile response time of all
transactions for each previously determined 10 second interval.
We select this metric, since the long tail of performance is more
important to end users than average values, and percentiles are not
handled well by classical performance modeling techniques. We
emphasize that our selection of the 95th percentile should not be
confused with the quantiles that we model in Section 3.4.
Quantiles indicate the probability that 95th percentile response
time will be less than or equal to a given value for a ten second
window, not the percentile of the response time metric itself.

3.3 Data Partitioning
We then partition the preprocessed trace into training and test data
sets. We use the training data for model generation and reserve the
test data to evaluate their accuracy. In our implementation, we
randomly sampled 80% of the data points for the training set, and
the remaining 20% for the test set.

3.4 Model Generation
Quantile regression [1] is a technique for modeling quantiles. As
with conventional regression analysis, it optimizes the coefficients
for a specified functional form such that the function models a
certain characteristic of the data. In this case, we are modeling the
response time threshold Τ for a given combination of CPU
utilization values such that there is a probability q of response
time being less than or equal to Τ, as shown in equation (4). A
quantile model is only valid for a particular quantile q, and, for
this instantiation, a given allocation a. We use an ensemble of
quantile models for different values of q and a to define the
conditional performance model, as we discuss later in this section.

],,,|(...)[:),,(dbappwebqdbappwebq uuuaPquuu Τ≤≈Τ τ (4)

While conventional regression analysis minimizes the sum of
squared residuals (or errors) to generate a model of the mean
conditioned on a set of variables, an alternative is to minimize the
sum of absolute residuals to yield a model of the median (i.e., 0.5
quantile). To obtain models for other quantiles, asymmetric
weights are applied to the absolute value of positive and negative
residuals. For example, weighting positive residuals three times as
much as negative residuals produces a model for the 0.75 quantile

(75th percentile). This optimization problem can be solved using
linear programming methods like simplex [26]. As with
conventional regression, the more data points N, the more
accurately the model reflects real-world relationships. To fit our
experimental data, we evaluated three parametric functional forms
of increasing complexity: linear (5), exponential (6), and a
combination of linear and exponential (7). We chose these forms
since response time versus utilization tends to show linear
behavior at low utilizations and exponential at high utilizations
[4]. Bodik et al. [12] use a model similar to (7) for modeling
response time and workload. However, it is more time-consuming
and challenging to derive coefficients for (7), due to its non-
linearity. Note that (6) can be reduced to a linear equation by
taking the natural logarithm of the response time data.

dbappwebdbappwebq uuuuuu ⋅+⋅+⋅+=Τ 3210),,(ββββ (5)
()dbappweb uuu

dbappwebq euuu ⋅+⋅+⋅+=Τ 3210),,(ββββ (6)

()dbappweb uuu
dbappwebdbappwebq

e

uuuuuu
⋅+⋅+⋅+

+⋅+⋅+⋅+=Τ

7654

3210),,(
ββββ

ββββ
 (7)

In the remainder of this section, we describe how we use quantile
regression to derive a conditional performance model. First, we
generate an ensemble of these functions for the CPU allocations a
under consideration and a set of quantiles {q} uniformly
distributed throughout the range [0,1]. In our implementation, we
define 49 values of q at uniform increments of 0.02, as in
{q:0.02,0.04,…,0.98}. Then for a given bin of response time,
utilization, and allocation values (t,i,j,k,a), we identify the
response time threshold Τt that demarcates the upper boundary of
t, and we find two adjacent values of q such that their
corresponding quantile models return values that straddle Τt.

),,(),,(
1 kjiqtkjiq uuuuuu

rr
Τ≤Τ≤Τ

−
 (8)

The overbar notation indicates that we use the geometric center of
each utilization bin (i,j,k) as the inputs to the quantile model, and r
is an index for the set of quantiles {q}. Next we estimate the
cumulative conditional probability of Τt using linear interpolation.

 ()
1

1
11],,,|[

−

−

Τ−Τ

Τ−Τ
⋅−+≈Τ≤ −−

rr

r

qq

qt
rrrt qqqkjiaP τ (9)

We repeat this for Τt-1, and now we can calculate the conditional
probability of bin (t,i,j,k,a).
],,,|[],,,|[],,,|[1 kjiaPkjiaPkjiatp tt −Τ≤−Τ≤= ττ (10)
Repeating this procedure for all bins gives us the conditional
performance model described in Section 2.2. Note that this
methodology is general and does not presume any domain
knowledge regarding its variables. Therefore, we can add,
remove, and change the metrics to consider different problems.
We demonstrate this generality in Section 5, where we not only
consider the effects of allocation on response time, but also those
of CPU contention when we consolidate our application
components onto a single physical server. We do this by
substituting allocation a with the CPU contention state.

3.5 Model Evaluation
A straightforward approach for measuring the accuracy of the
conditional performance model is to use it to calculate a
cumulative probability distribution for response time, per equation
(3), and then to compare that against a set of previously unseen
data points, such as the test partition described in Section 3.3. The
unseen requirement ensures that the model is sufficiently general,
and does not overfit its training data set.

102

We derive the conditional performance model using the procedure
described in Section 3.4, and we estimate the joint probability
distribution p[i,j,k|a] by counting the number of data points in
each bin (i,j,k,a). We similarly determine an observed quantile ψt|a
for each value of Τt and a by counting the percentage of data
points with response times less than or equal to Τt. If the model is
accurate, then ψt|a should approximately equal P[τ≤Τt|a], plus or
minus some statistical drift. Therefore, we can measure the
accuracy of our model in terms of the mean absolute error (MAE)
between these values, as defined in (11). We show these results in
Section 5.2.

 ∑
=

−Τ≤=
M

t
att aP

M
MAE

1
|]|[1 ψτ (11)

We also use the term mean absolute difference (MAD) in Section
5 to measure the difference between two measured or modeled
distributions. For this we compare the two values of P[τ≤Τt|a],
rather than determining ψt|a from the data.

4. TEST BED AND APPLICATIONS
We have conducted extensive experiments to collect the necessary
data using the virtualized test bed shown in Figure 2. It consists of
three physical servers, each with one Intel Pentium D 3.2 GHz
dual core CPU and 4GB RAM, and three virtual machines (VMs).
All servers run SLES 10 SP2 Linux with a Xen 3.2 kernel [24].
We used a modified 3-tier RUBiS e-commerce application [2] and
transaction traces adapted from a real application for our
experiments. Our RUBiS implementation consists of a front-end
Apache web server (version 2.2), a JBoss application server
(version 4.0.2), and a MySQL database server (version 5.0). The
RUBiS implementation defines 26 interactions and has 1,000,000
registered users and 60,000 items stored in the database.

Figure 2: RUBiS test bed implementation.
We deployed the RUBiS instances on three VMs in the virtualized
test bed and each application component was run inside one
virtual machine. Additionally, a request-based open workload
generator was running on a separate machine, and it replayed a
pre-defined trace of request rates. To emulate a real application
with a highly dynamic workload, we used transaction traces from
a globally-distributed business-critical application called VDR [5].
We replaced VDR transactions in the original traces with RUBiS
transactions of the same popularity rank.
We evaluated our models with the following scenarios. First, we
employed RUBiS as shown in Figure 2 and varied the allocation
of the three RUBiS VMs to use 25%, 40%, 70%, and 100% of a
physical CPU, which we call the 25%, 40%, 70%, and 100%
cases, respectively. In one more case, called 25% Consolidated,
we consolidated the three RUBiS VMs onto one physical server,
and allocated 25% of the CPU to each VM. To prevent
performance interference, we restricted the management domain
(dom-0) to use the other of the two CPU cores in the physical
machine. For all cases, the Xen credit scheduler was used to
allocate CPU shares to the VMs. We played the same transaction

trace on the workload generator for the same length of time for
each test case to ensure comparable results.
A monitoring agent ran in the management domain of each
physical server. It collected the CPU, memory, network, and disk
I/O utilization once per second for each hosted VM, although we
focus on the CPU data for this paper. Further, the client monitored
the response time of each individual transaction. We ran each test
case for about ten hours, and collected and pre-processed more
than 35,000 data points for each test case. After partitioning, we
have about 28,000 data points for training the models, and
approximately 7,000 for evaluation.

5. EXPERIMENTAL RESULTS
In Section 5.1, we examine the data that we collected from our
test bed. In Section 5.2 we evaluate our models on the test data
partition and select the most accurate model. Sections 5.3 and 5.4
apply this model to assess the response time effects of CPU
allocation and contention, respectively.

5.1 Analysis of Data
Figure 3 shows the actual distributions of (a) web, (b) application,
and (c) database tier CPU utilizations and (d) 95th percentile
response time for the pre-processed data from our five test cases.
The markers for the 25% Consolidated case are for the purpose of
distinguishing the lines when viewed in grayscale, and are not
intended to indicate the spacing of data points used to determine
the curves. The same applies to all figures in the section.
We observe that the web utilizations for all test cases are low with
little dispersion, the largest being a mean of 7.8% and a standard
deviation of 1.8% for the 25% Consolidated test case. Queueing
theory indicates that with consistently low utilization, the web tier
CPU is never a bottleneck, and that its utilization has a much
smaller effect on response time than either the application or
database tier CPU utilizations. Therefore, although we consider
the full distribution of web utilization in our modeling, as
indicated in equation (2), we simplify the presentation of our
results with a focus on application and database utilizations.
Our next observation is that the distributions of all three CPU
utilizations for the four non-consolidated test cases (i.e., 100%,
70%, 40%, and 25%) look like linearly scaled versions of each
other. This is intuitive if we recall that CPU utilization equals
CPU consumption divided by allocation, and we assume that the
distribution of CPU consumption is independent of allocation,
since it is mostly a function of workload and we used the same
workload for all five test cases. We test this hypothesis by
comparing the three-dimensional joint distributions of CPU
consumption for each pairing of these four test cases. We
discretize the distributions into 503=125,000 bins in the range of
[0,25]% CPU consumption for all three dimensions, which
includes more than 99% of the CPU consumption values for all
test cases. Note that Figure 3(a)-(c) shows CPU utilizations,
which is why it has values in excess of 25%. We then calculate
the mean absolute difference (MAD) between the cumulative
probabilities for each bin, similar to the procedure we describe in
Section 3.5. We find the mean absolute difference for these
consumption distributions to be no more than 0.0055, so we
conclude that the CPU consumption is independent of allocation.
On the other hand, in Figures 3(a)-(c) we can see that the
utilization distribution for the 25% Consolidated case is
substantially different from that for the identically allocated 25%
case. In particular, we notice that the distribution of application

103

utilizations is trimodal for the 25% Consolidated case, and
bimodal for the other four cases. The same is true for the database
tier, albeit with less sharply defined peaks. Applying the same
technique to measure the MAD between their joint CPU
consumption distributions (utilization multiplied by an allocation
of 0.25), we find a mean absolute difference of 0.0951. Therefore,
CPU contention due to resource sharing has a noticeable effect on
the resource consumption patterns of this application.

Figure 3: CDFs of metrics for all test cases.

The cumulative response time distributions in Figure 3(d) can be
interpreted as the probability of satisfying a given 95th percentile
response time requirement during a 10 second interval. Although
the 100% and 70% test cases do appear to be very similar, the
response time distributions for the other allocation and
consolidation states vary greatly from one another. In Sections 5.3
and 5.4, we use our probabilistic performance modeling approach
to examine how much of this variation is due to the different CPU
allocation and contention states versus the different utilization
distributions for these five test cases. As we showed in this
section, CPU contention in particular can have a significant effect
on the distribution of CPU utilization.

5.2 Evaluation and Selection of Models
In this section, we compare the three model types discussed in
Section 3.4, and select the most accurate one for more detailed
analysis and application to the problems in Section 5.3 and 5.4.
First, we derive conditional performance models using the 80%
training data partition and the linear, exponential, and combined
linear-exponential quantile regression functional forms defined in
equations (5), (6), and (7), respectively. We discretize utilization
and response time data within the ranges shown in Table 2,
because they encapsulate most of the data for each test case. Due
to the large range of values for response time, we use equal
logarithmic width bins in that dimension, in which the width of
each bin is measured as an exponent of 10. The number of bins in
each dimension M is equal to 50, for a total of 504 = 6.2 million
bins; we choose this number for a good balance between the
granularity and computational run time of our analysis. We then
use equation (3) to combine the conditional performance model of

each type with the discretized joint utilization distribution from
the 20% testing data partition for each test case to determine the
modeled cumulative response time distributions. Next we assess
the accuracy of each model by comparing its estimated
distribution against the previously unseen distribution of response
time in the 20% testing data partition. Table 2 shows comparisons
between each test case and model type, quantified by mean
absolute error (MAE) per equation (11).
Table 2. Mean absolute error between modeled and measured

distributions for the 20% test data partitions
Test
Case

Util.
Range [%]

Resp. Time
Range [ms]

Model
Type MAE

100% [0,25] [101,103] Lin. 0.0025
 Exp. 0.0023
 Lin-Exp 0.0240

70% [0,30] [101,103] Lin. 0.0030
 Exp. 0.0026
 Lin-Exp 0.0038

40% [0,50] [101,103] Lin. 0.0124
 Exp. 0.0076
 Lin-Exp 0.0237

25% [0,100] [101,104] Lin. 0.0397
 Exp. 0.0232

25%
Cons. [0,100] [101,105] Lin. 0.1112

 Exp. 0.0544

Our first observation is that model error monotonically increases
as CPU allocation decreases, and the model error is greatest for
the 25% Consolidated case. Further, the CPU utilization
distributions in Figure 3 increase according to the same pattern.
There may be a correlation between CPU utilization and the
accuracy of performance models, as evidenced by the focus on
low CPU utilization scenarios (<50% mean utilization) in the
performance modeling literature [5][9]. Along similar lines, we
observe that the difference in error between the linear and
exponential models is negligible for the 100% and 70% test cases,
but increases dramatically after that. For the 25% Consolidated
case, the linear model has twice the error of the exponential
model. The exponential model has consistently lower MAEs for
all five test cases, so we select that model type for our remaining
analysis. The success of the exponential model is not surprising
when we consider that queueing theory also derives non-linear
relationships between response time and resource utilization,
particularly for high utilization values.
Our second observation is that the combined linear-exponential
model performs poorly on the 100% and 40% test cases. It
performs better for the 70% case, but still has the greatest error of
the three model types. In theory, this model type should be able to
better fit the underlying data, due to its larger number of
coefficients, but it can be challenging in practice to identify
coefficient values for a non-linear equation. We did not generate
this model type for the 25% and 25% Consolidated test cases after
seeing the poor results for the first three test cases. We also spent
some time training neural networks as quantile models, with
similarly disappointing results. Although we see low errors in
general for the simpler models, there is room for improvement for
the 25% and 25% Consolidated test cases, which further
investigation of more sophisticated model types might address.

104

Now that we have validated the models and selected the
exponential type as the most accurate, we use all of the data for
our remaining analyses. Table 3 establishes the MAE values for
the exponential model when evaluated against all data, so that we
may compare these errors against results in later sections that are
also based on all of the data. For this evaluation, we use the same
ranges as shown in Table 2. We see that the errors in Table 3 are
mostly smaller than those for Table 2, which makes sense
considering that the data used to generate Table 3 includes the
80% training set against which these models were optimized. The
fact that the errors in Table 2 are not much bigger suggests that
the exponential model was not overfit to the training data, and that
it works well with unseen data, as long as variations in workload
and other unobserved factors continue to follow probability
distributions similar to what they were when the training data was
collected (see discussion in Section 2.1).
Table 3. Mean absolute error between modeled and measured

distributions for exponential model type and all data

Test Case MAE
100% 0.0021
70% 0.0023
40% 0.0066
25% 0.0234

25% Consolidated 0.0540
Figure 4 depicts the modeled and measured cumulative response
time distributions for selected test cases. As the low error for the
100% case suggests, its modeled and actual distributions are
almost indistinguishable. The 0.0234 error for the 25% case is
noticeable but small. Only the 0.0547 error for the 25%
Consolidated case is visually significant, and it appears that the
limited number of parameters for the exponential form constrains
this model from fully capturing the more complicated shape of the
actual response time distribution, but it is reasonably accurate.

Figure 4: CDFs of response time for exponential models vs.

actual data for selected test cases.
The coefficients for the exponential quantile models appear in
Figure 5. The form of this function is as defined in equation (6).
The value of β0 in (a) is plotted against the 49 modeled quantiles
{q:0.02,0.04,…,0.98} for each test case. Similarly, 5(b) shows the
values of β1, (c) displays β2, and (d) depicts β3. We see that the
coefficients for the 100% and 70% quantile models are similar to
each other and change only slightly with quantile. This matches
what we see in Figure 3(d), in which their response time
distributions are similar and have a narrow range of values. The
40% models are similar to those for the first two test cases, except
at quantiles above 0.85, in which the significance of web tier CPU
utilization becomes substantially more pronounced. This suggests
that web utilization at 40% allocation has a strong influence on
the tail of the response time distribution. The 25% models indicate
that application tier CPU utilization has a negative relationship
with 95th percentile response time. Although this may seem

counter-intuitive, it is likely due to this metric being correlated
with some other metric that also influences response time for 25%
allocation. We also see that response time for the 25% case has a
stronger positive relationship with web and database tier CPU
utilizations than it does for the first three test cases, particularly
when we consider that the utilizations themselves are higher for
25% allocation. As we have already seen, the 25% Consolidated
case is the most unusual of the five. The strength and direction of
its relationships between response time and utilization vary
markedly between quantiles.

Figure 5: Exponential model coefficients for all test cases.

In summary, we selected the exponential model type, which
estimates response time distributions with good accuracy for
various scenarios. Modeling high utilization scenarios is
challenging, and we show that our model achieves less than 6%
error (MAE*100%) for even the most challenging test case.

5.3 (How) Does CPU Allocation Impact
Application Response Time?
Now that we have assessed our models, we are ready to
investigate the questions of whether and how virtualized CPU
allocation affects the distribution of response time. We correct for
the effects of CPU utilization by selecting a common joint
utilization distribution for the four allocations under
consideration, and we use equation (3) to estimate cumulative
response time distributions for each allocation. We then calculate
mean absolute difference (MAD) statistics for each pair of
distributions, and compare them against the model errors in Table
3 to determine that the differences in response time due to
allocation are statistically significant.
To achieve valid modeling results, the common joint utilization
distribution should be representative of the distributions used to
train the model for the 100%, 70%, 40%, and 25% test cases,
which includes being within the range of utilization values for
each test case. This is because the model is only intended for
interpolation, not extrapolation. If we simply select the observed
utilization distribution for the 100% test case to use as our
common distribution, then the utilization values for most of its
data points would be significantly less than those for the 25% test
case. For example, the median (quantile 0.5) application

105

utilization for the 100% case is 11.1%, whereas the quantile of the
same value for the 25% allocation case is only 0.0032. Rather
than directly using the utilization distribution for the 100% case,
we linearly scale and translate it such that the resulting 0.005 and
0.995 quantiles are within the range of the same quantiles for each
of the observed utilization distributions. However, this criterion is
not possible for web utilization, due to its narrow variance and
low overlap between test cases, so we fix web utilization at an
intermediate value of 3.25% for our common distribution. Table 4
shows the range of values for our common utilization distribution
(Comm.), and their corresponding quantiles for the actual
utilization distributions of each test case.

Table 4. Common utilization ranges and corresponding
quantiles for actual utilization distributions

Test
Case

Web
Util

App
Util

0.005

App
Util

0.995

DB
Util

0.005

DB Util
0.995

Comm. 3.25% 11.48% 25.82% 3.28% 24.11%
100% 0.9996 0.5670 0.9950 0.1913 0.9950
70% 0.9991 0.2973 0.9599 0.1346 0.9344
40% 0.7208 0.1784 0.4080 0.0405 0.4278
25% 0.0004 0.0051 0.2852 0.0046 0.2657

Figure 6 shows the modeled cumulative response time
distributions for each allocation, and Table 5 lists the mean
absolute difference (MAD) between each pair of response time
distributions, sorted in order of increasing MAD.

Figure 6: Modeled response time CDFs for different

allocations with common joint utilization distribution.
For this analysis, the utilization range is [0,25]%, the response
time range is [101,103] ms, and the number of bins in each
dimension M is 50. We observe that 25% allocation results in the
lowest response time distribution, whereas 40% allocation has the
highest. The MAD for the 25% and 40% distributions is 0.1064,
which greatly exceeds either of their MAEs in Table 3 (0.0066 for
40% allocation, and 0.0234 for 25% allocation), suggesting that
the differences between their response distributions in Figure 6
are mostly real and not modeling artifacts. We similarly observe
that the MADs for every other pair of distributions also exceed
their respective model errors in Table 3.
Another observation is that 40% allocation has a much longer tail
above the 0.8 quantile. This is likely due to the increase in the
web utilization coefficient above quantile 0.85 for the 40% case,
as shown in Figure 5, combined with our relatively high choice of
web utilization for the common joint utilization distribution
(quantile 0.7208 of the 40% data). A third observation is that the
response time distribution for 25% starts at 40 ms, whereas the
other three distributions begin close to 50 ms. Since the bottom of
the distribution likely represents the shortest service time of the
application transaction types, and the other three distributions are
in agreement, it is possible that the low starting value for the 25%

case is a modeling artifact. A longer test run with more data points
or a more rigorous statistical analysis could confirm that.

Table 5. Comparison of modeled cumulative response time
distributions for different allocation pairings

Allocation 1 Allocation 2 MAD
100% 40% 0.0290
70% 25% 0.0290

100% 70% 0.0580
70% 40% 0.0823

100% 25% 0.0837
40% 25% 0.1064

The pattern of influence between allocation and response time is
not obvious from these results. A fine-grained survey of more
allocation levels could reveal additional patterns and insight, as
would a study of different allocations at the various application
tiers. We also caution that these results depend on our choice of
application, workload, common joint utilization distribution,
virtualization layer, scheduler, and possibly the underlying
hardware architecture. A more comprehensive investigation of these
factors is needed before drawing general conclusions for how
allocation affects response time.
In summary, we demonstrated an approach for assessing the impact
of virtualized CPU allocation on response time, and we observed
differences as high as 8-10% (MAD*100%) between several pairs
of allocations. This is much higher than the model errors, which
shows that CPU allocation is a significant factor in virtualized
application performance.

5.4 (How) Does CPU Contention Impact
Application Response Time?
To demonstrate the generality of our methodology, we now
investigate the questions of whether and how CPU contention
between the three virtual machines comprising our application
affects the distribution of response time when we correct for its
effects on the joint CPU utilization distribution. We apply the same
analysis as in the preceding section to compare the modeled
response time distributions for the 25% and 25% Consolidated test
cases. Selecting a common joint utilization distribution is easier for
this comparison, due to the high degree of overlap between the
measured utilization distributions for these two test cases. We
simply select the joint utilization distribution from the 25% case,
because it overlaps with 86% of the web utilization values for the
25% Consolidated case, and more than 99% of the values for
application and database utilization. We use a utilization range of
[0,100]%, a response time range of [101,105] ms, and the number of
bins in each dimension M is again 50.
Figure 7 shows the modeled cumulative response time distributions
for these two test cases with our selected common joint utilization
distribution. We saw in Figure 3(d) that the 25% Consolidated case
has a much longer response time tail than the non-consolidated 25%
case. Correcting for their different utilization distributions, we see
that the difference in tail length is less extreme, but still substantial.
The MAD between them is 0.0892, which exceeds the sum of the
model errors for these test cases in Table 3. This suggests that the
difference between these distributions is statistically significant, but
the actual degree of the difference depends on how the non-trivial
model errors in Table 3 stack up for this analysis. Summing them
gives a simple and conservative estimate, but a more rigorous
statistical analysis like bootstrapping could better answer this
question.

106

Figure 7: Modeled response time CDFs with and without CPU

contention for common joint utilization distribution.
We conclude that CPU contention increases response time, with
the corollary that there is incomplete performance isolation
between Xen VMs sharing the same CPU, even with a capped
scheduler mode. To better understand these effects, we encourage
a more comprehensive study using this methodology.

6. RELATED WORK
Modeling has garnered considerable attention within the computer
performance community for decades. Thus, the history of
modeling is too extensive to cover in detail. Instead, we briefly
consider three topics: a persistent challenge, a comparison with
traditional queueing performance models, and research leveraging
percentiles to improve modeling accuracy and usefulness.

6.1 The Theory and Practice Chasm
An aim of our research is to develop an accurate and intuitive
method of modeling the performance of the system. Such features
are important for instilling confidence in system administrators
and managers (i.e., practitioners) that we can automatically
control the managed system. However, convincing practitioners
has proven to be a persistent problem. For example, Bhat reported
in 1969 that one of the main challenges for the Queueing Theory
community was that practitioners found little use for it [15].
Howard noted two reasons for this: “ridiculous assumptions” used
by researchers, and a lack of communication between researchers
and practitioners [16]. Howard noted one cause of the
communication gap is a lack of understanding of the formal
concepts by the practitioners. Lee noted that many practitioners do
in fact adopt aspects of theoretical work, but choose not to discuss
their work with researchers for fear of criticism [17]. Hence, a
more intuitive approach could help bridge the gap.

6.2 Queueing Performance Model
In this section we consider a number of recent papers that use
queueing theory to model the behavior of modern computer
systems. A lot of recent research efforts have developed queueing
performance models for interactive and enterprise applications,
such as multi-tier Internet applications [3][5][6][8][10].
Urgaonkar et al. proposed one of the most recent and well-known
models [3], which uses a closed queueing network model and
Mean Value Analysis (MVA) algorithm for multi-tier
applications. Though these models work well for certain
scenarios, most of them require detailed service demand
information that is not readily available from traditional
monitoring. Further, the model parameters were normally derived
from certain workloads and hence the results are expected to work
well only for systems with a similar transaction mix. Stewart et al.
employed an open queueing network model to explicitly model a
non-stationary transaction mix [5]. Their model parameters can be
derived from passive monitoring data through regression analysis,
but they require sufficient application knowledge to measure the

transaction mix. Chen et al. generalized the idea to develop
models for both request-based and session-based workloads [8].
Most queueing theoretic approaches ignore high resource
utilization. Urgaonkar et al. take congestion effects into account in
their model [3], but how well it performs in general is not clear. In
addition, most prior work focused on physical server platforms;
only a few considered performance in virtualized environments
[9]. Virtualization layers increase the challenges of performance
modeling, because different applications may compete with one
another for resources in complicated ways across many different
servers. Compared to previous solutions, our methodology
evaluates and models the tail distributions of performance and
works well for different scenarios with low and high CPU
utilizations in virtualized environments. Also, our model is
calibrated from data that is generally available from regular
system resource and application performance monitoring. Though
our approach can incorporate multiple resources, we have not
included memory, network, and disk I/O in our current evaluation,
as Stewart et al. did in [10].

6.3 Other Performance Models
There are increasing efforts to apply statistical learning and
probability modeling to performance management. Cohen et al.
presented a probabilistic approach for correlating SLO violations
with system signatures [13]. Kumar et al. proposed an approach
that partitions the system’s state-space into homogeneous sub-
spaces, creates a micro-model for each subspace, and then uses
these micro-models to translate higher-level objectives into
component-level objectives [14]. Though these statistics-based
black box approaches exist, none is focused on general
performance modeling.

6.4 Use of Percentiles
A current criticism of traditional performance modeling is the use
of moments (e.g., mean response time), as practitioners often
prefer percentiles for modern, popular IT services. For example,
Amazon uses the 99.9th percentile to impose stringent
requirements on the latency of their platform [18].
In fact, the weakness of using moments in the modeling of
computer systems was observed as early as 1967, when Gaver
noted that such models oversimplified the variability and
randomness of data [25]. In 1976, Price recommended the use of
percentiles instead of moments [19]. The following year,
Lazowska provided additional evidence of the benefits of
percentiles over moments, and pointed out that matching a
sufficient number of percentiles would capture the moments as
well [20]. However, relatively few research efforts adopted
percentiles instead of moments. Two examples that did are [12]
and [21]. Other researchers looked for opportunities to instead
improve the accuracy of queueing models (e.g., [22]). As our
work shows, there are benefits beyond improved accuracy in
modeling percentiles rather than moments.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a probabilistic performance modeling
methodology for virtualized environments. Our approach models
the probability distributions of performance metrics, in terms of
percentiles, based on variables that can be readily measured and
controlled. This is one of the few performance modeling
approaches to address virtualized systems. We showed how to
implement this methodology to generate a conditional
performance model, as well as how to apply that model to

107

estimate response time distributions for a variety of scenarios. We
validated our model using the RUBiS benchmark application in a
Xen virtualized environment. The results show that our model is
accurate with mean absolute errors of less than 6%, even for our
most challenging test cases. We further showed that virtualized
CPU allocation and contention are significant factors in
determining application response time. We can combine this
methodology with a more rigorous statistical analysis to increase
confidence in its results, and apply it to a more comprehensive
survey of allocation and contention states to better understand the
relationships between allocation, contention and response time.
This can aid in the performance management of virtualized
applications, and can possibly help software designers to improve
the performance isolation of virtualized resource schedulers.
Our methodology is general and can be applied to non-CPU
resources such as memory, I/O, network, etc. As future work, we
will adapt it to different metrics, evaluate the effect of different
workloads on model accuracy, incorporate additional inputs for
improved model performance, and experiment with different
allocation levels and configurations. To demonstrate the practical
value of our models, we will integrate them with autonomic
control systems. We will also investigate how to fully automate
our methodology, and periodically generate new models to ensure
their continued accuracy in a production environment, even as
workloads, applications, and systems change over time.

8. REFERENCES
[1] R. Koenker, “Quantile Regression”, Cambridge University

Press, 2005.
[2] RUBiS: Rice University Bidding System.

http://www.cs.rice.edu/CS/Systems/DynaServer/rubis
[3] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A.

Tantawi, “An Analytical Model for Multi-tier Internet
Services and its Applications”. In Proc. of ACM
SIGMETRICS, June 2005.

[4] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik,
“Quantitative System Performance: Computer System
Analysis Using Queueing Network Models”. Prentice-Hall,
Inc., 1984.

[5] C. Stewart, T. Kelly, and A. Zhang, “Exploiting
Nonstationarity for Performance Prediction”. In Proc. of
EuroSys 2007.

[6] Q. Zhang, L. Cherkasova, and E. Smirni. “A Regression-
Based Analytic Model for Dynamic Resource Provisioning
of Multi-Tier Applications”. In Proc. of the 4th Int. Conf. on
Autonomic Computing and Communications (ICAC), 2007.

[7] V. Gupta, M. Harchol-Balter, A. Scheller Wolf, and U.
Yechiali. "Fundamental Characteristics of Queues with
Fluctuating Load". In Proc. of SIGMETRICS 2006, 2006.

[8] Y. Chen, S. Iyer, A. Sahai, and D. Milojicic, “A Systematic
and Practical Approach to Generating Policies from Service
Level Objectives”. In Proc. of the 11th IFIP/IEEE Int.
Symposium on Integrated Network Management , June 2009.

[9] Z. Wang, Y. Chen, D. Gmach, S. Singhal, B. Watson, W.
Rivera, X. Zhu, and C. Hyser, ”AppRAISE: Application-

level Performance Management in Virtualized Server
Environment”. IEEE Transactions on Networking and
Service Management, Vol. 6, No. 4, pp. 240-254, 2009.

[10] C. Stewart and K. Shen, “Performance modeling and system
management for multi-component online services”. In Proc.
of USENIX NSDI, 2005.

[11] E. Ipek, S. McKee, B. Supinski, M. Schultz, and R. Caruana,
“Efficiently exploring architectural design spaces via
predictive modeling”. In ASPLOS, 2006.

[12] P. Bodik, C. Sutton, A. Fox, D. Patterson, and M. Jordan,
“Response-Time Modeling for Resource Allocation and
Energy-Informed SLAs”. In Workshop on Statistical
Learning Techniques for Solving Systems Problems
(MLSys), Whistler, Canada, 2007.

[13] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox, “Capturing, indexing, clustering and retrieving
system history”, 20th ACM Symposium on Operating
Systems Principles (SOSP), 2005.

[14] V. Kumar, K. Schwann, S. Iyer, Y. Chen, and A. Sahai, “A
State Space Approach to SLA based Management”. In Proc.
of the IEEE/IFIP NOMS, 2008.

[15] U. Bhatt, “Sixty Years of Queueing Theory”, Management
Science, Vol. 15, No. 6, pp. B280—B294, 1969.

[16] R. Howard, “The Practicality Gap”, Management Science,
Vol. 14, No. 7, pp. 503—507, 1968.

[17] A. Lee, “Applied Queueing Theory”, Macmillan, 1966.
[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s Highly Available Key-
value Store”, SOSP, Stevenson, WA, 2007.

[19] T. Price, “A Note on the Effect of the Central Processor
Service Time Distribution on Processor Utilization in
Multiprogrammed Computer Systems”, J. ACM, Vol. 23,
No. 2, pp. 342—346, 1976.

[20] E. Lazowska, “The Use of Percentiles in Modeling CPU
Service Time Distributions”, Computer Performance, North
Holland Publishing Company, 1977.

[21] U. Lublin and D. Feitelson, “The workload on parallel
supercomputers: modeling the characteristics of rigid jobs”,
Journal of Parallel and Distributed Computing, 2003.

[22] D. Eager, D. Sorin, and M. Vernon, “AMVA Techniques for
High Service Time Variability”, ACM SIGMETRICS, Santa
Clara, CA, 2000.

[23] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” J. Machine Learning Research 3, 1157—
1182, 2003.

[24] Xen. http://bits.xensource.com/Xen/docs/user.pdf
[25] D. Gaver, “Probability Models for Multiprogramming

Computer Systems”, J. ACM, Vol. 14, No. 3, pp. 423—438,
1967.

[26] S. Boyd and L. Vandenberghe, “Convex Optimization”,
Cambridge University Press, 2004.

108

