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ABSTRACT 
Virtualization technologies enable organizations to dynamically 
flex their IT resources based on workload fluctuations and 
changing business needs. However, only through a formal 
understanding of the relationship between application 
performance and virtualized resource allocation can over-
provisioning or over-loading of physical IT resources be avoided. 
In this paper, we examine the probabilistic relationships between 
virtualized CPU allocation, CPU contention, and application 
response time, to enable autonomic controllers to satisfy service 
level objectives (SLOs) while more effectively utilizing IT 
resources. We show that with only minimal knowledge of 
application and system behaviors, our methodology can model the 
probability distribution of response time with a mean absolute 
error of less than 6% when compared with the measured response 
time distribution. We then demonstrate the usefulness of a 
probabilistic approach with case studies. We apply basic laws of 
probability to our model to investigate whether and how CPU 
allocation and contention affect application response time, 
correcting for their effects on CPU utilization. We find mean 
absolute differences of 8-10% between the modeled response time 
distributions of certain allocation states, and a similar difference 
when we add CPU contention. This methodology is general, and 
should also be applicable to non-CPU virtualized resources and 
other performance modeling problems. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modeling Techniques; G.3 
[Probability and Statistics]: Probabilistic algorithms; I.6.5 
[Simulation and Modeling]: Model Development – Modeling 
methodologies; 

General Terms 
Performance, Theory 

Keywords 
Performance modeling, quantile regression, probability theory. 

1. INTRODUCTION 
A recent focus on reducing the economic costs of information 
technology (IT) motivates increased resource sharing and “on-
demand” computing. Towards this, virtualization technologies enable  

 IT resources to be dynamically allocated among multiple 
applications. Such a model empowers organizations to flex their 
computing resources based on workloads and business needs, and 
hence improve the efficiency of IT operations. To achieve this 
goal, a key task is to leverage virtualization technologies to 
increase the effective utilization of IT resources. A specific 
problem within this area is how to minimize the allocation of 
server resources to an IT service (or application), while satisfying 
Service Level Objectives (SLOs). This objective requires a clear 
understanding of the impact on application performance of 
different virtual machine (VM) resource allocations and 
contention states, and development of performance models that 
accurately capture these relationships. This is difficult in practice 
due to the follow challenges. 
First, while many previous research efforts have developed 
performance models and addressed resource allocation, most of 
them have focused on physical servers [3][5][8][10]. A virtual 
machine differs from a physical server in that its effective 
capacity varies with dynamic resource allocation (e.g., CPU 
shares), which can significantly change application performance. 
Further, multiple applications sharing the same physical resources 
may compete with one another for the resource in complicated 
ways. As a result, the models derived for physical servers may not 
be directly applied to virtualized server environments. 
Second, application performance can be affected by many factors, 
including resource allocations, workload variations, and 
application and system behaviors. Many of these factors fluctuate 
randomly over various time scales, such as request arrival 
processes, transaction mixes, CPU scheduling, cache misses, and 
concurrency locking. Directly measuring and modeling these 
factors requires intimate knowledge of the applications and the 
systems, as well as invasive instrumentation. Even when 
technically possible, it is time consuming and often economically 
infeasible, due to the variety and complexity of modern IT 
application architectures like multi-tier and Service Oriented 
Architectures (SOA). Nevertheless, these hidden factors can still 
affect application performance to varying degrees, and capturing 
their effects without measuring them is a challenging problem. 
Lastly, a key goal of the SLOs is to ensure appropriate 
performance of the corresponding IT service. Most previous work 
has looked only at average performance (e.g., mean response 
time). However, average performance guarantees are not 
sufficient for many applications, in particular interactive ones. 
Instead, providers of such services prefer percentile performance 
guarantees [18], such as that 95% of end users receive response 
times below an agreed upon threshold. 
As a solution, we propose probabilistic performance modeling, in 
which we model the probability distribution of an application 
performance metric conditioned on one or more variables that we 
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can measure or control, such as system resource utilization and 
allocation metrics. We consider the influence of hidden factors 
that we cannot readily measure to be implicit in the probability 
distribution of performance. This is a valid assumption as long as 
there is no significant change in the probabilities of those factors. 
With a probabilistic model, we can calculate the probability of 
satisfying a percentile performance requirement, given knowledge 
of the conditional variables during a particular time interval. 
Our work provides three main contributions. First, we describe a 
general methodology for constructing probabilistic performance 
models that requires little special knowledge of the application. 
Second, we demonstrate the validity of our methodology through 
experiments in virtualized environments across a range of 
resource allocation and contention states. We show that our 
methodology can model the probability distribution of response 
time with a mean absolute error of less than 6% when compared 
with the measured response time distribution, even for the most 
challenging of our test cases. Third, we apply these models to case 
studies that investigate the impact of CPU allocation and 
contention on application performance when we correct for 
differences in CPU utilization. Our results show that allocation 
and contention do have statistically significant effects. 
Furthermore, our case studies illustrate how probabilistic models 
might be applied to other performance-related problems. 
The remainder of the paper is organized as follows. Section 2 
defines our problem. Section 3 explains our methodology. Section 
4 describes our test bed and applications, and Section 5 provides 
our experimental results. Section 6 discusses related work. Section 
7 concludes the paper with a summary of our work and a list of 
future directions. 

2. PROBLEM STATEMENT  

2.1 Background and Assumption  
We consider a virtualized environment where applications are 
hosted by a common pool of virtualized server resources. Each 
application consists of several interacting components, each of 
which runs in a virtual machine (VM) hosted on a physical server. 
As an example, consider a 3-tier application with a web tier, 
application tier and a database tier. Each tier runs in an individual 
virtual machine, and they can be placed on the same physical 
server or distributed across different servers. Autonomic 
controllers can dynamically adjust this layout using VM live 
migration. Controllers can also dynamically adjust resource 
sharing by the virtual machines, including their allocation of CPU, 
disk, and network I/O. Given a specific application and workload, 
the performance is affected by the resources allocated to the 
virtual machines hosting the application, as well as less readily 
observable factors like system scheduling, cache misses, and 
interactions between application components. Although we do not 
explicitly consider these hidden factors, they do have an effect on 
the probability distribution of a performance metric like response 
time, and some of them may be partially correlated with the 
variables that we do consider in our model. It is important to 
collect enough data to capture the fluctuation patterns of these 
hidden factors, such as non-stationary transaction mixes [5]. 
Significant changes in their probability distributions can 
invalidate a probabilistic performance model, although this can be 
fixed by periodic online training of new models. 
Though multiple system resources can affect performance, 
adjusting a virtual server’s CPU allocation is the most mature 

resource control option available in today’s virtualization 
technology. In the following discussion, we assume that CPU is 
the only resource to be dynamically allocated among virtual 
machines. We further assume that the VM scheduler employs a 
capped mode, such that a virtual machine cannot use more than 
the CPU time allocated to it. This assures a straightforward 
guarantee on resource allocation and provides good performance 
differentiation between applications sharing physical resources. 
Another assumption that we make to simplify our experimental 
results is that all three tiers always have the same CPU allocation, 
but our approach is general and removing this assumption is a 
straightforward extension of our work. Finally, we assume that the 
only specific knowledge we have about an application is how to 
monitor its response time and how to locate the VMs hosting its 
components.  

2.2 Problem Definition and Formulation 
For convenience, Table 1 summarizes the notation that we use in 
this paper. 

Table 1: Notation  
N Number of data points or observations 
D Number of variables x under consideration 
M Number of bins for discretizing each variable x 
α, a CPU allocation, a is discretized index 
uweb, i Web tier CPU utilization, i is discretized value 
uapp, j Application tier CPU utilization, j is discretized value 
udb, k Database tier CPU utilization, k is discretized value 
c CPU consumption (c=ua) 
τ, t Response time metric, t is discretized value 
Τt Upper bound of discretized response time t: Τt-1 < τ ≤ Τt 
q Quantile 
r Index for a set of quantiles {q} 
Τq() Quantile model of response time for quantile q 
ψ Observed percentage of data points ≤ some value of Τ 

To avoid confusion in terminology, we define a few concepts used 
throughout this paper. We use resource allocation α to refer to the 
percentage of a physical resource capacity (e.g., CPU) that is 
allocated to a virtual machine. Resource consumption c is the 
actual percentage of the physical resource consumed by a virtual 
machine during a given time interval. We define the resource 
utilization u of a virtual machine as the ratio between its resource 
consumption and resource allocation: u=c/α. For example, if a 
virtual machine consumes 20% of CPU capacity and is allocated 
40%, then its CPU utilization is 50%.  
As case studies for our probabilistic performance modeling 
methodology, we consider the questions of whether and how 
virtual machine CPU allocation affects the probability distribution 
of application response time. Although it appears obvious that the 
answer to the first question is yes, we must be careful to 
distinguish between the effects of CPU allocation and utilization 
on application performance. Queuing theory has firmly 
established a monotonically increasing relationship between the 
utilization of an available resource and its response time. In other 
words, response time is a function of CPU utilization, and 
utilization is defined relative to allocation. Since autonomic 
controllers can dynamically modify resource allocation in 
virtualized environments, and queueing theory suggests that a 
good heuristic for these controllers to maintain acceptable 
application performance is to strive for a particular utilization 
target, the question of interest is how allocation directly affects 
response time if the probability distribution of utilization is fixed. 
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We consider this problem from a probabilistic perspective. The 
CPU consumption of an application component changes from one 
measurement interval to the next, due in large part to random 
fluctuations in mix and interarrival times of transactions. If we 
double CPU allocation between measurement intervals, we cannot 
expect the CPU utilization in the next interval to be half of what it 
was in the previous interval. A more accurate expectation is that 
the probability distribution for CPU utilization will be scaled by a 
factor of ½ relative to what it was in the previous interval, as we 
show in Section 5.1. Even this might be an oversimplification if 
we consider that changing the allocation of one application 
component while leaving the other components unaffected could 
result in coupling effects that changes the joint distribution of 
CPU utilization for all application components in complex ways, 
but in this paper we only consider the same allocation at every 
tier. Response time also has a probabilistic relationship with CPU 
utilization, because of the factors discussed in Sections 1 and 2.1. 
In this probabilistic performance modeling approach, we consider 
the joint distribution of response time, CPU utilization, and 
allocation derived from readily measureable data. 
 

We consider a five dimensional state space for this problem 
(D=5), because it involves five metrics: response time τ, CPU 
allocation α, and CPU utilization at each of three tiers (uweb, uapp, 
udb). We simplify this problem by assuming that all three tiers 
have the same CPU allocation at any given time, which is why 
there is only one CPU allocation metric rather than three. 
Furthermore, we examine four distinct values of allocation: 100%, 
70%, 40%, and 25%. Note that these values were chosen to 
roughly cover the allocation range. Additional allocation values 
and combinations across tiers will be explored in future work. 
We discretize the variables using fixed-width binning. For any 
given metric x (e.g., web tier CPU utilization), equal width 
binning divides the variable range into M sub-ranges of the same 
size, and assigns a discrete value d to a continuous value x. 
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xmin and xmax are set to selected low and high percentiles of the 
variable x; we indicate these ranges for each analysis in Section 5. 
We discard data points outside the range (xmin,xmax], but an 
alternative approach to handle outliers would be to extend the 
ranges of the first and last bins to (-∞,xmin] and [xmax,+∞), 
respectively. 
If we assume the same number of bins M in each dimension, then 
the total number of bins for a full joint distribution is MD=M5. 
Since we are considering only four values of allocation, this is 
actually 4M4, but it is easy to see that this number grows 
exponentially with an increase in either M or D, so we must 
carefully select the granularity of our analysis M and the number 
of metrics D that we wish to consider.  
As previously discussed, we are interested in the dependency 
between CPU allocation and response time. Our approach is to 
characterize response time as a probability distribution 
conditioned on allocation: p[t|a], where t and a are the discretized 
variables for response time and allocation, respectively. As shown 
in equation (2), it is straightforward to derive an expression for 
p[t|a] using basic rules of probability and marginalizing, or 
summing out, the utilizations. The notations i, j, and k are the 
discretized variables for uweb, uapp, and udb, respectively. We call 
the first component of equation 2, p[t|a,i,j,k], the conditional 

performance model, and the second component, p[i,j,k|a], the 
joint utilization distribution for a given allocation. 
This expression for p[t|a] can be further summed to compute a 
cumulative probability distribution, for example, to estimate the 
probability that response time is less than or equal to a specified 
threshold, as shown in equation (3). Note that we use lower-case 
p[] to indicate a probability distribution, upper-case P[] for a 
cumulative distribution, and d as a summation index for t. 
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An intuitive approach to estimating the conditional performance 
model is to count the corresponding instances in the data. This 
approach has two main drawbacks: (1) it is not scalable since the 
required amount of data N grows exponentially with an increase in 
the number of variables D (the so called curse of dimensionality 
[23]); (2) even when data is sufficient, it may not be uniformly 
distributed over the state space of all relevant variables, resulting 
in pockets where the sparseness of data renders invalid the 
probability computed there. 
Quantile regression [1] is a simple alternative that does not rely on 
exhaustive counting to determine the conditional performance 
model, and thus avoids the need to restrict M and D solely 
because of the number of data points N. Its drawback is that it is a 
parametric method for which we must specify a functional form 
that might not exactly match the underlying relationships in the 
data. However, we find the error to be acceptable for the 
performance data we modeled (see Section 5.2). Although non-
parametric quantile regression techniques exist [1], which 
partition the input space and perform local fitting, they are prone 
to overfitting. We discuss the details of quantile regression 
modeling in Section 3.4. 

3. METHODOLOGY  
In this section, we present a generalized methodology that can be 
fully automated for deriving probabilistic performance models. 
This process comprises five steps, which are depicted in Figure 1. 

 

Figure 1: Automatic model generation and evaluation process. 
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3.1 Data Collection 
We employ monitoring agents to periodically collect CPU 
consumption and allocation values for each virtual machine in 
which an application component is running. We also deploy a 
performance monitor to measure the client-side response time of 
each individual transaction. Our measurement interval is 1 second. 
We describe our test bed in more detail in Section 4. 

3.2 Data Preprocessing 
Since application components are executed on different physical 
servers in most test cases, we keep the clocks on the servers 
synchronized. However, the sampling are not synchronized which 
can cause the measurement timestamps on difference servers to be 
off from each other by as much as half a measurement interval. In 
this work, we employ a simple moving average technique to 
increase the effective size of the measurement interval, and to 
reduce the relative synchronization error. We note that increasing 
the effective size of the measurement interval might not always be 
desired and that other techniques like linear interpolation could 
also synchronize the data. For each trace in our implementation, 
we calculate a ten second moving average that slides forward in 
one second increments, reducing the synchronization error to 5% 
or less. 
Our performance metric is the 95th percentile response time of all 
transactions for each previously determined 10 second interval. 
We select this metric, since the long tail of performance is more 
important to end users than average values, and percentiles are not 
handled well by classical performance modeling techniques. We 
emphasize that our selection of the 95th percentile should not be 
confused with the quantiles that we model in Section 3.4. 
Quantiles indicate the probability that 95th percentile response 
time will be less than or equal to a given value for a ten second 
window, not the percentile of the response time metric itself. 

3.3 Data Partitioning 
We then partition the preprocessed trace into training and test data 
sets. We use the training data for model generation and reserve the 
test data to evaluate their accuracy. In our implementation, we 
randomly sampled 80% of the data points for the training set, and 
the remaining 20% for the test set.  

3.4 Model Generation 
Quantile regression [1] is a technique for modeling quantiles. As 
with conventional regression analysis, it optimizes the coefficients 
for a specified functional form such that the function models a 
certain characteristic of the data. In this case, we are modeling the 
response time threshold Τ for a given combination of CPU 
utilization values such that there is a probability q of response 
time being less than or equal to Τ, as shown in equation (4). A 
quantile model is only valid for a particular quantile q, and, for 
this instantiation, a given allocation a. We use an ensemble of 
quantile models for different values of q and a to define the 
conditional performance model, as we discuss later in this section. 

 
],,,|(...)[:),,( dbappwebqdbappwebq uuuaPquuu Τ≤≈Τ τ  (4) 

While conventional regression analysis minimizes the sum of 
squared residuals (or errors) to generate a model of the mean 
conditioned on a set of variables, an alternative is to minimize the 
sum of absolute residuals to yield a model of the median (i.e., 0.5 
quantile). To obtain models for other quantiles, asymmetric 
weights are applied to the absolute value of positive and negative 
residuals. For example, weighting positive residuals three times as 
much as negative residuals produces a model for the 0.75 quantile 

(75th percentile). This optimization problem can be solved using 
linear programming methods like simplex [26]. As with 
conventional regression, the more data points N, the more 
accurately the model reflects real-world relationships. To fit our 
experimental data, we evaluated three parametric functional forms 
of increasing complexity: linear (5), exponential (6), and a 
combination of linear and exponential (7). We chose these forms 
since response time versus utilization tends to show linear 
behavior at low utilizations and exponential at high utilizations 
[4]. Bodik et al. [12] use a model similar to (7) for modeling 
response time and workload. However, it is more time-consuming 
and challenging to derive coefficients for (7), due to its non-
linearity. Note that (6) can be reduced to a linear equation by 
taking the natural logarithm of the response time data. 
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In the remainder of this section, we describe how we use quantile 
regression to derive a conditional performance model. First, we 
generate an ensemble of these functions for the CPU allocations a 
under consideration and a set of quantiles {q} uniformly 
distributed throughout the range [0,1]. In our implementation, we 
define 49 values of q at uniform increments of 0.02, as in 
{q:0.02,0.04,…,0.98}. Then for a given bin of response time, 
utilization, and allocation values (t,i,j,k,a), we identify the 
response time threshold Τt that demarcates the upper boundary of 
t, and we find two adjacent values of q such that their 
corresponding quantile models return values that straddle Τt. 
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The overbar notation indicates that we use the geometric center of 
each utilization bin (i,j,k) as the inputs to the quantile model, and r 
is an index for the set of quantiles {q}. Next we estimate the 
cumulative conditional probability of Τt using linear interpolation. 
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We repeat this for Τt-1, and now we can calculate the conditional 
probability of bin (t,i,j,k,a). 
 ],,,|[],,,|[],,,|[ 1 kjiaPkjiaPkjiatp tt −Τ≤−Τ≤= ττ  (10) 
Repeating this procedure for all bins gives us the conditional 
performance model described in Section 2.2. Note that this 
methodology is general and does not presume any domain 
knowledge regarding its variables. Therefore, we can add, 
remove, and change the metrics to consider different problems. 
We demonstrate this generality in Section 5, where we not only 
consider the effects of allocation on response time, but also those 
of CPU contention when we consolidate our application 
components onto a single physical server. We do this by 
substituting allocation a with the CPU contention state. 

3.5 Model Evaluation 
A straightforward approach for measuring the accuracy of the 
conditional performance model is to use it to calculate a 
cumulative probability distribution for response time, per equation 
(3), and then to compare that against a set of previously unseen 
data points, such as the test partition described in Section 3.3. The 
unseen requirement ensures that the model is sufficiently general, 
and does not overfit its training data set. 
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We derive the conditional performance model using the procedure 
described in Section 3.4, and we estimate the joint probability 
distribution p[i,j,k|a] by counting the number of data points in 
each bin (i,j,k,a). We similarly determine an observed quantile ψt|a 
for each value of Τt and a by counting the percentage of data 
points with response times less than or equal to Τt. If the model is 
accurate, then ψt|a should approximately equal P[τ≤Τt|a], plus or 
minus some statistical drift. Therefore, we can measure the 
accuracy of our model in terms of the mean absolute error (MAE) 
between these values, as defined in (11). We show these results in 
Section 5.2. 

 ∑
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We also use the term mean absolute difference (MAD) in Section 
5 to measure the difference between two measured or modeled 
distributions. For this we compare the two values of P[τ≤Τt|a], 
rather than determining  ψt|a from the data. 

4. TEST BED AND APPLICATIONS 
We have conducted extensive experiments to collect the necessary 
data using the virtualized test bed shown in Figure 2. It consists of 
three physical servers, each with one Intel Pentium D 3.2 GHz 
dual core CPU and 4GB RAM, and three virtual machines (VMs). 
All servers run SLES 10 SP2 Linux with a Xen 3.2 kernel [24].  
We used a modified 3-tier RUBiS e-commerce application [2] and 
transaction traces adapted from a real application for our 
experiments. Our RUBiS implementation consists of a front-end 
Apache web server (version 2.2), a JBoss application server 
(version 4.0.2), and a MySQL database server (version 5.0). The 
RUBiS implementation defines 26 interactions and has 1,000,000 
registered users and 60,000 items stored in the database. 

Figure 2: RUBiS test bed implementation. 
We deployed the RUBiS instances on three VMs in the virtualized 
test bed and each application component was run inside one 
virtual machine. Additionally, a request-based open workload 
generator was running on a separate machine, and it replayed a 
pre-defined trace of request rates. To emulate a real application 
with a highly dynamic workload, we used transaction traces from 
a globally-distributed business-critical application called VDR [5]. 
We replaced VDR transactions in the original traces with RUBiS 
transactions of the same popularity rank.  
We evaluated our models with the following scenarios. First, we 
employed RUBiS as shown in Figure 2 and varied the allocation 
of the three RUBiS VMs to use 25%, 40%, 70%, and 100% of a 
physical CPU, which we call the 25%, 40%, 70%, and 100% 
cases, respectively. In one more case, called 25% Consolidated, 
we consolidated the three RUBiS VMs onto one physical server, 
and allocated 25% of the CPU to each VM. To prevent 
performance interference, we restricted the management domain 
(dom-0) to use the other of the two CPU cores in the physical 
machine. For all cases, the Xen credit scheduler was used to 
allocate CPU shares to the VMs. We played the same transaction  

trace on the workload generator for the same length of time for 
each test case to ensure comparable results. 
A monitoring agent ran in the management domain of each 
physical server. It collected the CPU, memory, network, and disk 
I/O utilization once per second for each hosted VM, although we 
focus on the CPU data for this paper. Further, the client monitored 
the response time of each individual transaction. We ran each test 
case for about ten hours, and collected and pre-processed more 
than 35,000 data points for each test case. After partitioning, we 
have about 28,000 data points for training the models, and 
approximately 7,000 for evaluation. 

5.  EXPERIMENTAL RESULTS 
In Section 5.1, we examine the data that we collected from our 
test bed. In Section 5.2 we evaluate our models on the test data 
partition and select the most accurate model. Sections 5.3 and 5.4 
apply this model to assess the response time effects of CPU 
allocation and contention, respectively. 

5.1 Analysis of Data 
Figure 3 shows the actual distributions of (a) web, (b) application, 
and (c) database tier CPU utilizations and (d) 95th percentile 
response time for the pre-processed data from our five test cases. 
The markers for the 25% Consolidated case are for the purpose of 
distinguishing the lines when viewed in grayscale, and are not 
intended to indicate the spacing of data points used to determine 
the curves. The same applies to all figures in the section. 
We observe that the web utilizations for all test cases are low with 
little dispersion, the largest being a mean of 7.8% and a standard 
deviation of 1.8% for the 25% Consolidated test case. Queueing 
theory indicates that with consistently low utilization, the web tier 
CPU is never a bottleneck, and that its utilization has a much 
smaller effect on response time than either the application or 
database tier CPU utilizations. Therefore, although we consider 
the full distribution of web utilization in our modeling, as 
indicated in equation (2), we simplify the presentation of our 
results with a focus on application and database utilizations. 
Our next observation is that the distributions of all three CPU 
utilizations for the four non-consolidated test cases (i.e., 100%, 
70%, 40%, and 25%) look like linearly scaled versions of each 
other. This is intuitive if we recall that CPU utilization equals 
CPU consumption divided by allocation, and we assume that the 
distribution of CPU consumption is independent of allocation, 
since it is mostly a function of workload and we used the same 
workload for all five test cases. We test this hypothesis by 
comparing the three-dimensional joint distributions of CPU 
consumption for each pairing of these four test cases. We 
discretize the distributions into 503=125,000 bins in the range of 
[0,25]% CPU consumption for all three dimensions, which 
includes more than 99% of the CPU consumption values for all 
test cases. Note that Figure 3(a)-(c) shows CPU utilizations, 
which is why it has values in excess of 25%. We then calculate 
the mean absolute difference (MAD) between the cumulative 
probabilities for each bin, similar to the procedure we describe in 
Section 3.5. We find the mean absolute difference for these 
consumption distributions to be no more than 0.0055, so we 
conclude that the CPU consumption is independent of allocation. 
On the other hand, in Figures 3(a)-(c) we can see that the 
utilization distribution for the 25% Consolidated case is 
substantially different from that for the identically allocated 25% 
case. In particular, we notice that the distribution of application 
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utilizations is trimodal for the 25% Consolidated case, and 
bimodal for the other four cases. The same is true for the database 
tier, albeit with less sharply defined peaks. Applying the same 
technique to measure the MAD between their joint CPU 
consumption distributions (utilization multiplied by an allocation 
of 0.25), we find a mean absolute difference of 0.0951. Therefore, 
CPU contention due to resource sharing has a noticeable effect on 
the resource consumption patterns of this application. 

 
Figure 3: CDFs of metrics for all test cases. 

The cumulative response time distributions in Figure 3(d) can be 
interpreted as the probability of satisfying a given 95th percentile 
response time requirement during a 10 second interval. Although 
the 100% and 70% test cases do appear to be very similar, the 
response time distributions for the other allocation and 
consolidation states vary greatly from one another. In Sections 5.3 
and 5.4, we use our probabilistic performance modeling approach 
to examine how much of this variation is due to the different CPU 
allocation and contention states versus the different utilization 
distributions for these five test cases. As we showed in this 
section, CPU contention in particular can have a significant effect 
on the distribution of CPU utilization. 

5.2 Evaluation and Selection of Models 
In this section, we compare the three model types discussed in 
Section 3.4, and select the most accurate one for more detailed 
analysis and application to the problems in Section 5.3 and 5.4. 
First, we derive conditional performance models using the 80% 
training data partition and the linear, exponential, and combined 
linear-exponential quantile regression functional forms defined in 
equations (5), (6), and (7), respectively. We discretize utilization 
and response time data within the ranges shown in Table 2, 
because they encapsulate most of the data for each test case. Due 
to the large range of values for response time, we use equal 
logarithmic width bins in that dimension, in which the width of 
each bin is measured as an exponent of 10. The number of bins in 
each dimension M is equal to 50, for a total of 504 = 6.2 million 
bins; we choose this number for a good balance between the 
granularity and computational run time of our analysis. We then 
use equation (3) to combine the conditional performance model of 

each type with the discretized joint utilization distribution from 
the 20% testing data partition for each test case to determine the 
modeled cumulative response time distributions. Next we assess 
the accuracy of each model by comparing its estimated 
distribution against the previously unseen distribution of response 
time in the 20% testing data partition. Table 2 shows comparisons 
between each test case and model type, quantified by mean 
absolute error (MAE) per equation (11). 
Table 2. Mean absolute error between modeled and measured 

distributions for the 20% test data partitions 
Test 
Case 

Util. 
Range [%] 

Resp. Time 
Range [ms] 

Model 
Type MAE 

100% [0,25] [101,103] Lin. 0.0025 
   Exp. 0.0023 
   Lin-Exp 0.0240 

70% [0,30] [101,103] Lin. 0.0030 
   Exp. 0.0026 
   Lin-Exp 0.0038 

40% [0,50] [101,103] Lin. 0.0124 
   Exp. 0.0076 
   Lin-Exp 0.0237 

25% [0,100] [101,104] Lin. 0.0397 
   Exp. 0.0232 

25% 
Cons. [0,100] [101,105] Lin. 0.1112 

   Exp. 0.0544 

Our first observation is that model error monotonically increases 
as CPU allocation decreases, and the model error is greatest for 
the 25% Consolidated case. Further, the CPU utilization 
distributions in Figure 3 increase according to the same pattern. 
There may be a correlation between CPU utilization and the 
accuracy of performance models, as evidenced by the focus on 
low CPU utilization scenarios (<50% mean utilization) in the 
performance modeling literature [5][9]. Along similar lines, we 
observe that the difference in error between the linear and 
exponential models is negligible for the 100% and 70% test cases, 
but increases dramatically after that. For the 25% Consolidated 
case, the linear model has twice the error of the exponential 
model. The exponential model has consistently lower MAEs for 
all five test cases, so we select that model type for our remaining 
analysis. The success of the exponential model is not surprising 
when we consider that queueing theory also derives non-linear 
relationships between response time and resource utilization, 
particularly for high utilization values. 
Our second observation is that the combined linear-exponential 
model performs poorly on the 100% and 40% test cases. It 
performs better for the 70% case, but still has the greatest error of 
the three model types. In theory, this model type should be able to 
better fit the underlying data, due to its larger number of 
coefficients, but it can be challenging in practice to identify 
coefficient values for a non-linear equation. We did not generate 
this model type for the 25% and 25% Consolidated test cases after 
seeing the poor results for the first three test cases. We also spent 
some time training neural networks as quantile models, with 
similarly disappointing results. Although we see low errors in 
general for the simpler models, there is room for improvement for 
the 25% and 25% Consolidated test cases, which further 
investigation of more sophisticated model types might address. 
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Now that we have validated the models and selected the 
exponential type as the most accurate, we use all of the data for 
our remaining analyses. Table 3 establishes the MAE values for 
the exponential model when evaluated against all data, so that we 
may compare these errors against results in later sections that are 
also based on all of the data. For this evaluation, we use the same 
ranges as shown in Table 2. We see that the errors in Table 3 are 
mostly smaller than those for Table 2, which makes sense 
considering that the data used to generate Table 3 includes the 
80% training set against which these models were optimized. The 
fact that the errors in Table 2 are not much bigger suggests that 
the exponential model was not overfit to the training data, and that 
it works well with unseen data, as long as variations in workload 
and other unobserved factors continue to follow probability 
distributions similar to what they were when the training data was 
collected (see discussion in Section 2.1). 
Table 3. Mean absolute error between modeled and measured 

distributions for exponential model type and all data  

Test Case MAE 
100% 0.0021 
70% 0.0023 
40% 0.0066 
25% 0.0234 

25% Consolidated 0.0540 
Figure 4 depicts the modeled and measured cumulative response 
time distributions for selected test cases. As the low error for the 
100% case suggests, its modeled and actual distributions are 
almost indistinguishable. The 0.0234 error for the 25% case is 
noticeable but small. Only the 0.0547 error for the 25% 
Consolidated case is visually significant, and it appears that the 
limited number of parameters for the exponential form constrains 
this model from fully capturing the more complicated shape of the 
actual response time distribution, but it is reasonably accurate.  

 
Figure 4: CDFs of response time for exponential models vs. 

actual data for selected test cases. 
The coefficients for the exponential quantile models appear in 
Figure 5. The form of this function is as defined in equation (6). 
The value of β0 in (a) is plotted against the 49 modeled quantiles 
{q:0.02,0.04,…,0.98} for each test case. Similarly, 5(b) shows the 
values of β1, (c) displays β2, and (d) depicts β3. We see that the 
coefficients for the 100% and 70% quantile models are similar to 
each other and change only slightly with quantile. This matches 
what we see in Figure 3(d), in which their response time 
distributions are similar and have a narrow range of values. The 
40% models are similar to those for the first two test cases, except 
at quantiles above 0.85, in which the significance of web tier CPU 
utilization becomes substantially more pronounced. This suggests 
that web utilization at 40% allocation has a strong influence on 
the tail of the response time distribution. The 25% models indicate 
that application tier CPU utilization has a negative relationship 
with 95th percentile response time. Although this may seem 

counter-intuitive, it is likely due to this metric being correlated 
with some other metric that also influences response time for 25% 
allocation. We also see that response time for the 25% case has a 
stronger positive relationship with web and database tier CPU 
utilizations than it does for the first three test cases, particularly 
when we consider that the utilizations themselves are higher for 
25% allocation. As we have already seen, the 25% Consolidated 
case is the most unusual of the five. The strength and direction of 
its relationships between response time and utilization vary 
markedly between quantiles. 

 
Figure 5: Exponential model coefficients for all test cases. 

In summary, we selected the exponential model type, which 
estimates response time distributions with good accuracy for 
various scenarios. Modeling high utilization scenarios is 
challenging, and we show that our model achieves less than 6% 
error (MAE*100%) for even the most challenging test case. 

5.3  (How) Does CPU Allocation Impact 
Application Response Time? 
Now that we have assessed our models, we are ready to 
investigate the questions of whether and how virtualized CPU 
allocation affects the distribution of response time. We correct for 
the effects of CPU utilization by selecting a common joint 
utilization distribution for the four allocations under 
consideration, and we use equation (3) to estimate cumulative 
response time distributions for each allocation. We then calculate 
mean absolute difference (MAD) statistics for each pair of 
distributions, and compare them against the model errors in Table 
3 to determine that the differences in response time due to 
allocation are statistically significant. 
To achieve valid modeling results, the common joint utilization 
distribution should be representative of the distributions used to 
train the model for the 100%, 70%, 40%, and 25% test cases, 
which includes being within the range of utilization values for 
each test case. This is because the model is only intended for 
interpolation, not extrapolation. If we simply select the observed 
utilization distribution for the 100% test case to use as our 
common distribution, then the utilization values for most of its 
data points would be significantly less than those for the 25% test 
case. For example, the median (quantile 0.5) application 
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utilization for the 100% case is 11.1%, whereas the quantile of the 
same value for the 25% allocation case is only 0.0032. Rather 
than directly using the utilization distribution for the 100% case, 
we linearly scale and translate it such that the resulting 0.005 and 
0.995 quantiles are within the range of the same quantiles for each 
of the observed utilization distributions. However, this criterion is 
not possible for web utilization, due to its narrow variance and 
low overlap between test cases, so we fix web utilization at an 
intermediate value of 3.25% for our common distribution. Table 4 
shows the range of values for our common utilization distribution 
(Comm.), and their corresponding quantiles for the actual 
utilization distributions of each test case. 

Table 4. Common utilization ranges and corresponding 
quantiles for actual utilization distributions 

Test 
Case 

Web 
Util 

App 
Util 

0.005 

App 
Util 

0.995 

DB 
Util 

0.005 

DB Util 
0.995 

Comm. 3.25% 11.48% 25.82% 3.28% 24.11% 
100% 0.9996 0.5670 0.9950 0.1913 0.9950 
70% 0.9991 0.2973 0.9599 0.1346 0.9344 
40% 0.7208 0.1784 0.4080 0.0405 0.4278 
25% 0.0004 0.0051 0.2852 0.0046 0.2657 

Figure 6 shows the modeled cumulative response time 
distributions for each allocation, and Table 5 lists the mean 
absolute difference (MAD) between each pair of response time 
distributions, sorted in order of increasing MAD. 

 
Figure 6: Modeled response time CDFs for different 

allocations with common joint utilization distribution. 
For this analysis, the utilization range is [0,25]%, the response 
time range is [101,103] ms, and the number of bins in each 
dimension M is 50. We observe that 25% allocation results in the 
lowest response time distribution, whereas 40% allocation has the 
highest. The MAD for the 25% and 40% distributions is 0.1064, 
which greatly exceeds either of their MAEs in Table 3 (0.0066 for 
40% allocation, and 0.0234 for 25% allocation), suggesting that 
the differences between their response distributions in Figure 6 
are mostly real and not modeling artifacts. We similarly observe 
that the MADs for every other pair of distributions also exceed 
their respective model errors in Table 3. 
Another observation is that 40% allocation has a much longer tail 
above the 0.8 quantile. This is likely due to the increase in the 
web utilization coefficient above quantile 0.85 for the 40% case, 
as shown in Figure 5, combined with our relatively high choice of 
web utilization for the common joint utilization distribution 
(quantile 0.7208 of the 40% data). A third observation is that the 
response time distribution for 25% starts at 40 ms, whereas the 
other three distributions begin close to 50 ms. Since the bottom of 
the distribution likely represents the shortest service time of the 
application transaction types, and the other three distributions are 
in agreement, it is possible that the low starting value for the 25% 

case is a modeling artifact. A longer test run with more data points 
or a more rigorous statistical analysis could confirm that. 

Table 5. Comparison of modeled cumulative response time 
distributions for different allocation pairings 

Allocation 1 Allocation 2 MAD 
100% 40% 0.0290 
70% 25% 0.0290 

100% 70% 0.0580 
70% 40% 0.0823 

100% 25% 0.0837 
40% 25% 0.1064 

The pattern of influence between allocation and response time is 
not obvious from these results. A fine-grained survey of more 
allocation levels could reveal additional patterns and insight, as 
would a study of different allocations at the various application 
tiers. We also caution that these results depend on our choice of 
application, workload, common joint utilization distribution, 
virtualization layer, scheduler, and possibly the underlying 
hardware architecture. A more comprehensive investigation of these 
factors is needed before drawing general conclusions for how 
allocation affects response time. 
In summary, we demonstrated an approach for assessing the impact 
of virtualized CPU allocation on response time, and we observed 
differences as high as 8-10% (MAD*100%) between several pairs 
of allocations. This is much higher than the model errors, which 
shows that CPU allocation is a significant factor in virtualized 
application performance. 

5.4  (How) Does CPU Contention Impact 
Application Response Time? 
To demonstrate the generality of our methodology, we now 
investigate the questions of whether and how CPU contention 
between the three virtual machines comprising our application 
affects the distribution of response time when we correct for its 
effects on the joint CPU utilization distribution. We apply the same 
analysis as in the preceding section to compare the modeled 
response time distributions for the 25% and 25% Consolidated test 
cases. Selecting a common joint utilization distribution is easier for 
this comparison, due to the high degree of overlap between the 
measured utilization distributions for these two test cases. We 
simply select the joint utilization distribution from the 25% case, 
because it overlaps with 86% of the web utilization values for the 
25% Consolidated case, and more than 99% of the values for 
application and database utilization. We use a utilization range of 
[0,100]%, a response time range of [101,105] ms, and the number of 
bins in each dimension M is again 50. 
Figure 7 shows the modeled cumulative response time distributions 
for these two test cases with our selected common joint utilization 
distribution. We saw in Figure 3(d) that the 25% Consolidated case 
has a much longer response time tail than the non-consolidated 25% 
case. Correcting for their different utilization distributions, we see 
that the difference in tail length is less extreme, but still substantial. 
The MAD between them is 0.0892, which exceeds the sum of the 
model errors for these test cases in Table 3. This suggests that the 
difference between these distributions is statistically significant, but 
the actual degree of the difference depends on how the non-trivial 
model errors in Table 3 stack up for this analysis. Summing them 
gives a simple and conservative estimate, but a more rigorous 
statistical analysis like bootstrapping could better answer this 
question. 
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Figure 7: Modeled response time CDFs with and without CPU 

contention for common joint utilization distribution. 
We conclude that CPU contention increases response time, with 
the corollary that there is incomplete performance isolation 
between Xen VMs sharing the same CPU, even with a capped 
scheduler mode. To better understand these effects, we encourage 
a more comprehensive study using this methodology. 

6. RELATED WORK 
Modeling has garnered considerable attention within the computer 
performance community for decades. Thus, the history of 
modeling is too extensive to cover in detail. Instead, we briefly 
consider three topics: a persistent challenge, a comparison with 
traditional queueing performance models, and research leveraging 
percentiles to improve modeling accuracy and usefulness. 

6.1 The Theory and Practice Chasm 
An aim of our research is to develop an accurate and intuitive 
method of modeling the performance of the system. Such features 
are important for instilling confidence in system administrators 
and managers (i.e., practitioners) that we can automatically 
control the managed system. However, convincing practitioners 
has proven to be a persistent problem. For example, Bhat reported 
in 1969 that one of the main challenges for the Queueing Theory 
community was that practitioners found little use for it [15]. 
Howard noted two reasons for this: “ridiculous assumptions” used 
by researchers, and a lack of communication between researchers 
and practitioners [16]. Howard noted one cause of the 
communication gap is a lack of understanding of the formal 
concepts by the practitioners. Lee noted that many practitioners do 
in fact adopt aspects of theoretical work, but choose not to discuss 
their work with researchers for fear of criticism [17]. Hence, a 
more intuitive approach could help bridge the gap. 

6.2 Queueing Performance Model 
In this section we consider a number of recent papers that use 
queueing theory to model the behavior of modern computer 
systems. A lot of recent research efforts have developed queueing 
performance models for interactive and enterprise applications, 
such as multi-tier Internet applications [3][5][6][8][10]. 
Urgaonkar et al. proposed one of the most recent and well-known 
models [3], which uses a closed queueing network model and 
Mean Value Analysis (MVA) algorithm for multi-tier 
applications. Though these models work well for certain 
scenarios, most of them require detailed service demand 
information that is not readily available from traditional 
monitoring. Further, the model parameters were normally derived 
from certain workloads and hence the results are expected to work 
well only for systems with a similar transaction mix. Stewart et al. 
employed an open queueing network model to explicitly model a 
non-stationary transaction mix [5]. Their model parameters can be 
derived from passive monitoring data through regression analysis, 
but they require sufficient application knowledge to measure the  

transaction mix. Chen et al. generalized the idea to develop 
models for both request-based and session-based workloads [8].  
Most queueing theoretic approaches ignore high resource 
utilization. Urgaonkar et al. take congestion effects into account in 
their model [3], but how well it performs in general is not clear. In 
addition, most prior work focused on physical server platforms; 
only a few considered performance in virtualized environments 
[9]. Virtualization layers increase the challenges of performance 
modeling, because different applications may compete with one 
another for resources in complicated ways across many different 
servers. Compared to previous solutions, our methodology 
evaluates and models the tail distributions of performance and 
works well for different scenarios with low and high CPU 
utilizations in virtualized environments. Also, our model is 
calibrated from data that is generally available from regular 
system resource and application performance monitoring. Though 
our approach can incorporate multiple resources, we have not 
included memory, network, and disk I/O in our current evaluation, 
as Stewart et al. did in [10]. 

6.3 Other Performance Models 
There are increasing efforts to apply statistical learning and 
probability modeling to performance management. Cohen et al. 
presented a probabilistic approach for correlating SLO violations 
with system signatures [13]. Kumar et al. proposed an approach 
that partitions the system’s state-space into homogeneous sub-
spaces, creates a micro-model for each subspace, and then uses 
these micro-models to translate higher-level objectives into 
component-level objectives [14]. Though these statistics-based 
black box approaches exist, none is focused on general 
performance modeling. 

6.4 Use of Percentiles 
A current criticism of traditional performance modeling is the use 
of moments (e.g., mean response time), as practitioners often 
prefer percentiles for modern, popular IT services. For example, 
Amazon uses the 99.9th percentile to impose stringent 
requirements on the latency of their platform [18].  
In fact, the weakness of using moments in the modeling of 
computer systems was observed as early as 1967, when Gaver 
noted that such models oversimplified the variability and 
randomness of data [25]. In 1976, Price recommended the use of 
percentiles instead of moments [19]. The following year, 
Lazowska provided additional evidence of the benefits of 
percentiles over moments, and pointed out that matching a 
sufficient number of percentiles would capture the moments as 
well [20]. However, relatively few research efforts adopted 
percentiles instead of moments. Two examples that did are [12] 
and [21]. Other researchers looked for opportunities to instead 
improve the accuracy of queueing models (e.g., [22]). As our 
work shows, there are benefits beyond improved accuracy in 
modeling percentiles rather than moments.  

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a probabilistic performance modeling 
methodology for virtualized environments. Our approach models 
the probability distributions of performance metrics, in terms of 
percentiles, based on variables that can be readily measured and 
controlled. This is one of the few performance modeling 
approaches to address virtualized systems. We showed how to 
implement this methodology to generate a conditional 
performance model, as well as how to apply that model to 
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estimate response time distributions for a variety of scenarios. We 
validated our model using the RUBiS benchmark application in a 
Xen virtualized environment. The results show that our model is 
accurate with mean absolute errors of less than 6%, even for our 
most challenging test cases. We further showed that virtualized 
CPU allocation and contention are significant factors in 
determining application response time. We can combine this 
methodology with a more rigorous statistical analysis to increase 
confidence in its results, and apply it to a more comprehensive 
survey of allocation and contention states to better understand the 
relationships between allocation, contention and response time. 
This can aid in the performance management of virtualized 
applications, and can possibly help software designers to improve 
the performance isolation of virtualized resource schedulers.  
Our methodology is general and can be applied to non-CPU 
resources such as memory, I/O, network, etc. As future work, we 
will adapt it to different metrics, evaluate  the effect of different 
workloads on model accuracy, incorporate additional inputs for 
improved model performance, and experiment with different 
allocation levels and configurations. To demonstrate the practical 
value of our models, we will integrate them with autonomic 
control systems.  We will also investigate how to fully automate 
our methodology, and periodically generate new models to ensure 
their continued accuracy in a production environment, even as 
workloads, applications, and systems change over time. 
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