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ABSTRACT

Commercial buildings are significant consumers of electric-
ity. The first step towards better energy management in
commercial buildings is monitoring consumption. However,
instrumenting every electrical panel in a large commercial
building is expensive and wasteful. In this paper, we pro-
pose a greedy meter (sensor) placement algorithm based
on maximization of information gained, subject to a cost
constraint. The algorithm provides a near-optimal solution
guarantee. Furthermore, to identify power saving opportu-
nities, we use an unsupervised anomaly detection technique
based on a low-dimensional embedding. Further, to better
manage resources such as lighting and HVAC, we propose a
semi-supervised approach combining hidden Markov models
(HMM) and a standard classifier to model occupancy based
on readily available port-level network statistics.
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General Terms

Algorithms, Measurement, Performance

Keywords
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1. INTRODUCTION

In the United States alone, there are an estimated five
million commercial buildings. In 2010, these buildings con-
sumed about 1.3 trillion kWh of electricity, roughly one third
of the electricity generated in the country. The energy costs
for commercial buildings exceeds $100 billion annually. Due
to recent economic turmoil, and increased awareness of en-
vironmental concerns (e.g., global climate change), many
companies want to reduce power use in their buildings. Of-
ten, they turn to consulting firms for services like building
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energy efficiency analyses. The work described in this paper
addresses shortcomings of existing analyses of this sort.

A first challenge for improving power use in a building
is understanding how much power each appliance or device
in the building uses. One option is to install power meters
on all electrical panels, to collect usage data near the con-
sumers, and get a (approximate) per-appliance breakdown
of power use. The main disadvantage of this approach is
the cost to buy and install the meters. For companies that
own a lot of buildings (e.g., Walmart has more than 10,000
stores globally), this cost becomes prohibitively expensive.
Thus, one research question we address is where to place
a limited set of meters in a building, while minimizing the
information loss. We propose an efficient greedy algorithm
that provides a near-optimal solution.

A second challenge we investigate is how to systematically
monitor building energy use and automatically detect prob-
lems that arise over time. A limitation of manual consulting
services is that they can only identify issues that are occur-
ring at the time the analysis is conducted, and typically only
a limited number of panels are monitored, identified by an
expert based on the likelihood of energy savings. Having a
consultant repeat the study on a regular (e.g., daily) basis
is not cost effective, so an automated technique is highly
desired. We present results from applying our unsupervised
anomaly (fault) detection and ranking methods for monitor-
ing tens of meters over a six month period.

Lastly, consulting studies will typically recommend static
solutions to reduce building energy use. For example, turn
on all lights only during work hours (e.g., 8am to 6pm),
and turn most off otherwise. While such techniques do help
reduce power use in a building, further savings are possible.
One approach is to only turn on lights (or HVAC systems)
in areas where people are currently in, and to turn them off
when the people leave. To facilitate such dynamic resource
management, we developed a semi-supervised method for
occupancy modeling.

Our group is instrumenting three large commercial build-
ings on the HP Labs campus in Palo Alto, CA. This instru-
mentation will provide extensive data on the campus power
use, which will establish the “ground truth” against which
we will evaluate our power management methods.

The paper makes the following contributions:

e It proposes a greedy algorithm for meter placement in
a building’s electrical infrastructure, to maximize mu-
tual information while minimizing the cost of meter-
ing. Besides being computationally efficient, we also
show that the proposed greedy algorithm guarantees a



Figure 1: The HP Labs Palo Alto Campus.

near-optimal solution. In particular, we show that mu-
tual information becomes submodular under a special
graphical structure that arises in distribution networks
such as power, water and gas.

e The meter placement results gauged by the ability of
the selected meters to predict measurements of the un-
selected ones are better on average by about 15% over
other methods considered.

e The results are demonstrated for six months of data
from a large test bed (three buildings totaling 300,000
sq. ft.). The anomaly detection, and occupancy mod-
eling techniques, described in more detail in [3], are
validated over this data set.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the HP Labs campus, the
power delivery and measurement infrastructure, and the cam-
pus power use characteristics. Section 3 describes our KDD
methods. Section 4 evaluates our methods. Section 5 dis-
cusses related work. Section 6 summarizes our work and
future directions.

2. CAMPUS OVERVIEW

The HP Labs campus contains six main buildings with a
total footprint of 700,000 sq. ft. We are instrumenting three
two-storey buildings (1, 2, 3), as highlighted in Figure 1.
These three buildings have a 300,000 sq. ft. footprint and
host about 500 occupants.

2.1 Power Distribution Topology

Buildings 1, 2 and 3 are powered by a single utility feed
(3-phase 12.5kV). An emergency generator (3-phase 480V)
maintains critical loads in the event of a utility failure. Au-
tomatic transfer switches (ATS) are used to revert from the
utility to backup power. Each building has a main distribu-
tion panel (3-phase 480V) that branches to about 10 major
sub-loads or sub-panels. A 135kW photo voltaic array on top
of Building 3 offsets power demand during daylight hours.

2.2 Power Data Collection

To date, 33 power meters have been deployed on our cam-
pus. These include meters for building and top-level load

995

Aggregate
T

Building 1
T

Building 2

Building 3

Outside
T

I I 1
Jan-22-Sun Jan-23-Mon Jan-24-Tues Jan-25-Wed  Jan-26-Thurs Jan-27-Fri Jan-28-Sat

Figure 2: Campus power use and outside temperature.

distribution panels in Buildings 1-3. We are now instrument-
ing the second-tier distribution panels within each building,
to obtain finer grained electrical data for our future work.

The installed electrical meters are commercial (3-phase)
devices from Schneider Electric (www.schneider-electric.
com). Data is retrieved from each meter every 10 seconds
using the MODBUS over Ethernet protocol. The data in-
cludes metrics such as line voltage, real and apparent power,
power factor, current and frequency. The data is stored in
a PI-Server from OSIsoft (www.osisoft.com).

2.3 Campus Power Use Characteristics

As further motivation for the challenges addressed in this
paper, we briefly examine some characteristics of the cam-
pus power use." The top graph in Figure 2 shows the total
power use for Buildings 1-3 over a one week period (from
Jan. 22 through Jan. 28, 2012). The peak load is nearly 2
MW; understanding how to reduce this would translate di-
rectly to operational savings for the company. The base load
is roughly 1.5 MW. An implication of this is very little in-
sight on what is responsible for campus power consumption
can be gleaned (e.g., via disaggregation techniques like [9]
since none of the algorithms scale up to handle hundreds
to thousands of loads present in commercial buildings, and
further, none of the methods disaggregate base load) from
the aggregate power. This means that more meters must
be installed. Our meter placement algorithm addresses the
issue of how many meters are needed and where they are
needed, to minimize the cost while maximizing the informa-
tion obtained.

The middle three graphs in Figure 2 show the total power
demand for Buildings 1, 2 and 3, respectively. The bot-
tom graph shows the outside temperature. Comparing this
graph to the others reveals a correlation between outside
temperature, occupancy (i.e., work hours) and power use.
This motivates our investigation in Section 3.3 of occupancy
modeling, to reduce the use of heating or cooling in areas of
the building that people are not actively using.

3. METHODS

Figure 3 shows the overall framework of our approach.
The meter placement algorithm forms the basis for instru-
menting a building power infrastructure. For building power
management, we propose an unsupervised anomaly detec-
tion and ranking method based on low dimensional embed-

!We expect these characteristics to exist with many other
commercial buildings as well.
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Figure 3: Overview of the methods used.

ding and k-nearest neighbors. For dynamic control of light-
ing and HVAC resources, we describe a semi-supervised ap-
proach that uses network port statistics to model occupancy.

3.1 Meter Placement

As noted in Section 2.3, the significant base load in the
power demand of these buildings and the sheer number of
devices in a large commercial building make known load
disaggregation methods unreliable, thus requiring extensive
metering of different electrical panels in each of these build-
ings for fine-grained power monitoring. However, one issue
with this approach is that the total number of panels that
could potentially be monitored can be very large, to the
extent that meter deployment at all these locations is not
economical (the cost of each power meter ranges between
$900 and $3,000. This raises an interesting research ques-
tion as to how and which panels should be selected for power
meter deployment.

There are several criteria one could use to choose the pan-
els for meter deployment. They include the total energy con-
sumption of a panel, variability in the energy consumption,
number of sub-panels/loads, predictability of panel power
demand, or an information-theoretic measure. We choose
mutual information, an information-theoretic measure that
in a loose sense chooses panels that are highly unpredictable
in terms of their power demands. As we show in Section 4.1,
the panels selected using this criterion are superior to those
selected using criterion such as the total energy consumption
or variability in energy consumption.

Next, we demonstrate how this problem can be formulated
as an optimization problem with the goal of choosing the set
of panels with maximum information content.
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Figure 4: Example topology of building electrical
panels where meters can be installed.

3.1.1 Problem Formulation

Before we formulate the problem, we need to introduce
some notation. The panels at different locations on the site
are related in a topological manner that can be represented
by a tree, as shown in Figure 4. Each node in this tree
denotes a panel, where the leaf nodes (denoted by squares)
correspond to panels that directly feed either a single load
(e.g., achiller or a compressor) or a set of loads (e.g., lighting
load). The remaining nodes in the tree topology (denoted
by circles) correspond to panels that feed other panels given
by their child nodes in the tree.

Let & denote the entire set of panels, i.e., all the nodes
in a given tree, and let £ C S denote the set of leaf nodes.
For any node ¢ € S, let X; be a random variable denoting
the power consumption recorded at panel i. Then, for any
set of nodes A C S, we denote by X 4 the random variables
associated with the nodes in A.

Given a constraint on the number of meters that can be af-
forded (k), we use mutual information as a criteria to choose
the best panels for meter deployment, which can be formu-
lated as an optimization problem shown below.

argmax I1(Xz;Xa)
AcCs

s.t.

(1)
|Al < &,

where (X ;X .4) denotes the amount of information con-
veyed by monitoring power consumption at panels in A
about the power consumption at panels in £. Note that
when k > |£|, i.e., in the scenario where one could afford
to deploy meters at each of the leaf nodes that directly feed
a bunch of loads, the mutual information is maximized by
choosing A to be the set of all the panels in £. On the
other hand when k < |£|, the above optimization problem
attempts to find the best set of panels that provide maxi-
mum information about power consumption at each of these
leaf nodes (the last layer of panels in the hierarchy).

3.1.2  Proposed Solution

Mutual Information is given by
I(Xp;Xa) = HXz) — H(X 2| Xa),

which corresponds to the reduction in uncertainty about
power consumption at panels in £ given the power consump-



tion information at panels in A, where

H(X;)=-— ZPr(XC =x¢)log, (Pr(Xs =x¢)), and

H(Xe|Xa)=— > Pr(Xe=x,Xa=x4)
XLoXA

log, (Pr(X: = x2|Xa =x%x4)).

Unfortunately, the optimization problem in (1) is NP-
hard. Hence, we propose a greedy approach to optimize
the given problem. The greedy algorithm chooses panels for
meter deployment in a sequential manner, where given the
set of panels that have already been chosen by the algorithm
(denoted by .A), the next best panel is chosen to be the one
that maximizes the gain in mutual information, i.e.,

j° =argmax I(Xz;Xauj) — [(Xz; Xa).
JgA
The solution obtained using the above greedy algorithm
is not necessarily an optimal solution for the optimization
problem in (1). However, we show below that the obtained
greedy solution is guaranteed to be near-optimal.

3.1.3 Near-optimality of greedy solution

To show that the solution obtained using the above greedy
approach is near-optimal, we rely on the theory of sub-
modularity introduced by Nemhauser et al. [21] and pop-
ularized by the work of Krause et al. [14, 13].

Krause et al. [14] study budgeted maximization problems
of the form

arg max F(A)
Acs

st |A| <k,

where § = {1,--- ,N} is a set of elements and F : 4 —
R is a function that maps the set of elements to the real
line. A greedy solution to this problem is to select elements
sequentially according to

j° =argmax F(AUj) — F(A).
JEA
Krause et al. [14] show that the solution obtained using this
greedy approach is near-optimal in the following sense

1
Fgreedy 2 (1 - g) Fopt7
iff the objective function F' is submodular, where submodu-
larity is defined below.

DEFINITION 1. (Submodularity) Let F be a function
that maps from a set of elements S to the real line R. Then,
F is said to be submodular iff VA C B C S and for any

j¢B7
F(AUj) = F(A) 2 F(BUj) — F(B).

In our optimization problem, the objective function is mu-
tual information, which unfortunately is not submodular,
except for some known special cases [13, 16, 17]. However,
as we will show below, in our problem setting, mutual in-
formation turns out to be submodular, thus guaranteeing
near-optimality of the above greedy algorithm.
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LEMMA 1. Given the tree topology described in Section 3.1,
let S denote the set of nodes in the tree and L the set of leaf
nodes. Then, VA C B C S, and for any j ¢ B,

I(Xe; Xavg) — I(X;Xa) 2 I(Xz; Xpus) — I(Xz; XB)
(2)

PROOF. From the definition of mutual information, we
have

I(X;Xaus) — I(Xp; Xa) = HX | X4) — HX 2| X au;)
= H(X;|X4)— H(X;|X,, X?)),
3

where the second equality follows from the first by expand-
ing the entropy terms and by simple manipulation of the
resulting terms. Note that the second term in (3) is equal to
0, i.e., H(X;|X,,X4) =0, as given the power consumption
at all the leaf nodes, the power consumption at any panel
upstream is completely deterministic.

Hence, the relation in (2) reduces to showing

H(X;|X4) > H(X;|X35),

which follows from the principle of “information never hurts”
in information theory [5]. Thus, proving the submodularity
of mutual information under the given tree topology. [J

3.1.4 Use of Granger Causality

Another strategy to select meters would be by applying
Granger causality, which considers the direction of flow of in-
formation unlike mutual information. Note that this could
be remedied by the use of Transfer entropy, which is a ver-
sion of mutual information that can detect the direction of
information flow [24], however, transfer entropy is currently
restricted to bivariate situations.

Granger Causality (or G-causality) test, which was ini-
tially introduced in the field of economics [8], is a statistical
hypothesis test for determining whether one time series is
useful in forecasting another. It is normally tested in the
context of linear regression models. For example, let X(t)
and Y (t) be two time series. Consider the following two
auto-regressive models for predicting X ()

X(t) = Zan(t —j) +ei(t)

X(t) = Z%‘X(t =)+ Db Y (t—35) + ea(t),

j=1

where p is the maximum number of lagged observations in-
cluded in the model, and e; (t), e2(t) are the prediction errors
(residuals) for the two regression models. If the variance in
the prediction error is reduced by the inclusion of Y'(¢) in
the model, then Y is said to G-cause X. In other words, Y
is said to G-cause X if the coefficients in {b;}%_, are jointly
significantly different from zero.

This test could potentially be used to reveal any hidden
causal relationships between the loads (leaf nodes in the tree
topology). Incorporating these relationships could further
lead to a better choice of panels for meter deployment.

3.2 Anomaly Detection

Anomaly (or fault) detection is useful in detecting ab-
normal behavior in the power usage data collected from a



building. Note that an anomaly indicates an irregular us-
age pattern and may not always correspond to a component
failure or faulty operation. Since labeled data is difficult
to obtain, we propose an unsupervised cluster-based algo-
rithm that detects anomalous points via a low-dimensional
embedding of the power data. This algorithm takes as input
the power time series of a meter over a period of time, and
outputs the probability of a particular day being anomalous.
The probability scores can be used to rank the days in terms
of anomalousness, providing a building administrator with a
prioritized list of data points that require further inspection.

We refer to power data measured by a single meter over a
24 hour period (i.e., one day) as one observation or as a single
power-time curve. As mentioned, we use an unsupervised
approach where we cluster the power-time curves of each
meter. The intuition behind this approach is that the data
points that exhibit normal behavior will form tight clusters
while anomalous points will lie outside these clusters.

To compare two power-time curves, we use the standard
Euclidean distance measure, or the ls norm, between the fre-
quency spectrum of the two power-time curves. While the
frequency spectrum consists of two components - magnitude
and phase, we restrict our attention to the magnitude of the
frequency spectrum as it contains all the necessary informa-
tion regarding the power consumption behavior.

Our algorithm consists of five steps. First, missing val-
ues in a power-time curve are imputed. Second, the fre-
quency spectrum of the imputed power-time curve is com-
puted. Third, the standard Euclidean distance measure is
used to determine the dissimilarity between the power con-
sumption profiles of any two days. Fourth, a low dimensional
embedding of the power-curves. The fifth step uses this low
dimensional embedding to compute the probability score of
each observation being anomalous. We achieve this using
a k-NN (nearest neighbor) density estimation algorithm. A
more detailed explanation of our algorithm is provided in [3].

3.3 Occupancy Modeling

Occupancy modeling forms another important component
for efficient power management in buildings. Many commer-
cial buildings employ either a fixed time L-HVAC (lighting,
heating ventilation and cooling) schedule or a fixed tem-
perature set point schedule. This often leads to unneces-
sary conditioning of the building, especially when the actual
occupancy is low. Hence, some recent work has suggested

occupancy-based L-HVAC scheduling for efficient power man-

agement. However, most of this work assumes the avail-
ability of occupancy sensors, whose installation and mainte-
nance may be prohibitive on a large campus.

Melfi et al. [20] propose an alternative method that uses
existing network infrastructure to estimate occupancy. They
studied the use of Dynamic Host Control Protocol (DHCP)
logs and other explicit ways such as monitoring PC activity
in estimating occupancy. We instead developed an implicit
occupancy sensing procedure, where we use traffic statis-
tics associated with layer 2 network ports in each cubicle to
build occupancy models. Network switches typically main-
tain counters (for each physical layer 2 port) for the amount
of in and out flowing traffic. We retrieve these statistics
from the switches in the buildings every 30 minutes. The
estimated occupancies at cube level are then used to esti-
mate occupancy of a zone (e.g., multiple cubicles), which

998

msg - 1.77 MW

B1-0.68 MW
B3 - 0.48 MW

swh29 - 50 kw

ATS-2L
Buss-2L
DistPanel-M
MCC-1121
MCC-2LW
Mcc-ChillerRoom
Panel-2LW
Panel-2uwW
PDU-1 -
TrashComp-2HY -
XFRMR-2T1 -

DistPanel-1316A - 128 kW
DistPanel-3DH1 - 15kw
MCC-1716 - 3kw
Panel-1315 - 160 kW
Panel-3L-ATS 140 kw
Panel-3LW 11 kw
Panel-3UW 24kw
Panel-AEP 35 kw
XFRMR-3T1 - 35kwW

1L-ATS
CA1

CA2
CHL-ALW
CH3
Chiller-2

104 kW
24 kw
7kw
30 kW
142 kW
0.41 kW
8 kw
0kw

MCC-293A - -
P-3 -

Figure 5: Tree topology of the 33 meters

can further be used for occupancy-based L-HVAC schedul-
ing of that zone.

A primary challenge with using network data to estimate
occupancy is the lack of labeled data. To address this,
we consider two different approaches. The first is an un-
supervised approach where we use hidden Markov model
(HMM) [6] to estimate occupancy from network data. The
second is a two-stage semi-supervised approach. Its first
stage involves unsupervised learning using HMM, while the
second trains a classifier using minimal labeled data. The
two approaches are described in more detail in [3].

4. EXPERIMENTAL RESULTS
4.1 Meter Placement

To assess our meter placement method, we used the greedy
algorithm described in Section 3.1 to select the most infor-
mative power meters among the 33 installed in our campus.
The tree topology corresponding to these power meters is
shown in Figure 5. The figure also shows their average power
consumption values. For simplicity, we assumed in our ex-
periments that the random variables corresponding to the
power consumption at different panels are Gaussian.

Next, we greedily selected the meters in a sequential man-
ner using the greedy algorithm described in Section 3.1 un-
der three different criteria: mutual information, total power
consumption and variability in power consumption. Table 1
shows a ranked list of the meters in the order in which they
are selected using these three criterion. Figure 6 shows plots
comparing the three ranked lists. The diagonal line (dotted
red line) in these plots correspond to the scenario where the
two ranked lists are exactly equal.

Given this ranked list and a budget (¢ < 33) on the num-
ber of panels that can be metered, the top ¢ panels from
the ranked list can be chosen to be metered. The power
consumption measured at these metered panels can then be
used to predict the power consumption at the remaining
panels. We use this predictive ability as a measure of good-
ness of the selected meters. We compare the above three
criteria based on the predictive ability of the selected pan-
els. A random selection is included as a baseline. Figure 7(a)
shows the average RMS (root mean squared) prediction er-
ror over all non-metered panels as a function of the num-
ber of panels metered (¢). Similarly, Figure 7(b) shows the
average normalized RMS prediction error, where the nor-



Total Variability in Mutual

# | Power Consumption | Power Consumption | Information

1 | msg swb29-main swb29-main

2 | swb29-main msg msg

3 | bl-main bl-main b2-Buss-2L

4 | b2-main b2-main bl-main

5 | b3-Panel-1315 b3-Panel-AEP bl-CH1-ALW
6 | bl-CH-3 bl-CH-3 b2-main

7 | b3-Panel-3L-ATS b2-Dist Panel-M b3-Panel-AEP
8 | b3-DistPanel-1316A | bl-CH1-ALW bl-CH-3

9 | bl-1L-ATS swb29-Chiller-2 b2-DistPanel-M
10 | b2-XFRMR-2T1 b2-MCC-2LW b2-MCC-2LW
11 | b2-Buss-2L b3-Panel-3UW bl-CA-2
12 | b2-MCC-2LW b2-Panel-2UW b3-Panel-1315

Table 1: Selection order of first 12 meters
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Figure 6: Comparison of ranked list similarity

malization is based on the average power consumption of
a meter. These two figures reveal that the proposed mu-
tual information based meter deployment outperforms those
based on the total power consumption and the variability in
power consumption by an average of about 15%. The curve
corresponding to the random selection is averaged over 100
different random orderings of the 33 meters.

Figure 8 shows the top 12 panels selected using mutual
information. This solution can be verified intuitively. For
example, panel b3-main is not selected as it is completely
deterministic given the aggregate meter (msg) and the other
three main meters (bl-main, swb29-main and b2-main). Sim-
ilarly, most of the selected leaf node panels consist of loads
that are less predictable given the others. For example,“b3-
Panel-AEP” directly measures the power generated by the
photo-voltaic array installed on building 3. This panel’s out-
put is less predictable and hence can be considered as a good
choice for meter deployment.

4.1.1 Discussion and Extensions

One limitation of our current implementation is the Gaus-
sian assumption on the distribution of the random vari-
ables. This is not a strictly valid assumption, as most panels
have at least two distinct operating states, one with higher
power consumption during business hours and the other with
a baseload power consumption during non-business hours.
Hence, a more accurate approach would be to model these
random variables as a mixture of Gaussians. However, one
limitation of using a Gaussian mixture model is that there is
no closed form expression for entropy of a Gaussian mixture
density, and hence one would need to approximate it.

4.1.2  Use of Granger Causality
As described in Section 3.1.4, we investigated applying
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Figure 8: The panels selected by the greedy algo-
rithm and mutual information criterion

Granger causality to a subset of meters. Figure 9 shows in-
teresting causal relationships between 8 sub-panels in Build-
ing 1. The loads on these panels are as follows: panels
b1-CA-1 and b1-CA-2 feed two different compressors, while
the panels b1-CH-3, b1-CH1-ALW and swb29-Chiller-2 feed
three different Chillers. The loads on the remaining 3 panels
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Figure 9: The causal relationship between different

sub-panels in Building 1

| Meter name | AUC |

bl-main 0.87
b2-main 0.96
b3-main 0.99

(a)

[ | Category | # of Anomalies |
1 | High power usage 66
2 | Low power usage 65
3 | Irregular Shutdown 6
4 | Irregular (time) usage 9
5 | Oscillatory behavior 28
6 | Abnormal drop/rise 29

(b)

Figure 10: Anomaly detection measurements: (a) AUC
(b) Anomaly types and number.

are listed in the figure. The undirected edges demonstrate
strong bi-directional causal relationships, while the directed
edges demonstrate strong uni-directional causal relationship
in the direction given by the arrow. Note from this figure
that there is a strong causal relationship between the chillers
and the compressors. For example, there is a strong causal
relationship from chiller-2 to compressor-2, while chiller-3
seems to strongly G-cause compressor-1.

Furthermore, we used the G-causal test to rank the panels
based on their predictive ability (results omitted for brevity).
However, the mutual information based ranking performs
better than the G-causal ranking with respect to the RMS
prediction error on the non-metered panels. This could be
due to the fact that the G-causal test is currently limited
to linear regression models, whereas information theoretic
measures are also sensitive to any non-linear relationships.
Although extensions of the G-causal test to non-linear mod-
els exist, they are computationally less efficient and their
statistical properties are not well studied [1].

4.2 Anomaly detection

We performed anomaly detection on six months of data
from the 33 power meters. To validate our results, for three
meters (bl-main, b2-main and b3-main) we obtained the
ground truth by consulting with the building administra-
tor, who looked at the entire time series data and marked
days with potential anomalous regions. As described in Sec-
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tion 3.2, our algorithm assigns a probability score to each
day, which can be used to obtain a ranked list of days in
decreasing order of them being anomalous.

Given this ranked list, a building administrator could choose
a threshold k and declare the top k points as anomalies for
further inspection, and the remaining as normal, where k
could vary from 0 to the maximum number of points in the
input data (M). Each choice of k results in a certain num-
ber of false positives and false negatives. For example, when
k = 0, i.e., when all the points are declared as normal, the
false positive rate (FPR) is 0 while the false negative rate
(FNR) is 1. On the other hand, when k = M, the associ-
ated FPR is 1 and FNR is 0. Varying this threshold k& results
in different values of FPR and FNR, leading to a receiver
operating characteristic (ROC) curve. The area under the
ROC curve (AUC) defines the quality of the obtained rank-
ing. In the ideal case, where all the anomalous points are
ranked at the top followed by normal points, the AUC takes
the maximum value of 1. On the other hand, a random
ranking achieves an AUC value of 0.5. We use AUC as a
performance metric for our algorithm. Figure 10(a) shows
the performance of our algorithm on 3 meters.

Further, we applied our algorithm on the remaining 30
meters, where we obtained a ranked list of anomalous days
for each meter. We then manually characterized the top
anomalies (for a conservative k value) by assigning them
categories, as shown in Figure 10(b). Note that a particu-
lar anomaly could belong to multiple categories. Detecting
these anomalies could potentially offer several benefits such
as energy savings, detecting faulty equipment resulting in
savings in maintenance costs, etc. Potential power savings
in the high power usage and irregular time usage anoma-
lies varied from around 50 to 2000 kWh per anomaly. In
Figure 11, we demonstrate 4 of these 6 categories.

Figure 11(a) corresponds to the air handlers in a building,
while Figure 11(b) corresponds to a chiller load. The low-
dimensional embeddings obtained using MDS in both cases
show clusters of normal behavior (June 30th and June 17th),
and points (circled) that were detected as anomalous.

For the fan load, two anomalous points are seen (July
6th and July 7th) corresponding to high and irregular time
usage (categories 1 and 4), where the air handlers were oper-
ating all through the night. Detecting and correcting these
anomalies could have potentially saved 70 kWh over these
two days. For the chiller load, three anomalous points corre-
sponding to three consecutive days have been detected (July
5th and July 6th shown in the figure), where the chiller was
abruptly shut down (categories 2 and 3) during business
hours. If this was not caused due to a maintenance sched-
ule, it could potentially correspond to a failed component.

4.3 Occupancy modeling

In this section, we demonstrate the superior performance
of the proposed two-stage approach for occupancy estima-
tion. In particular, we show that the use of k-state HMM
as a pre-processing step in the two stage approach leads to
a better classification accuracy over directly using the net-
work switch port statistics in the classification algorithm.
We compare the performance of the 2-stage approach with
that of a 1-stage approach where the classifier is trained di-
rectly based on the network switch level port statistics.

To quantify the estimation accuracy of these algorithms,
we collected ground truth data from 10 occupants over a pe-
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Figure 12: (a) Average error rates of models. (b) Fea-
ture quality.

riod of 16 weekdays. The occupants recorded their presence
in their cube at a time resolution of 30 minutes, where an
occupant marks their presence only if they are present for a

1001

majority of that 30 minute period. The in and out flowing
network switch statistics are also collected every 30 minutes.

Figure 12 shows the experimental results. Figure 12(a)
compares the average error rate between the two approaches,
where the error rate is averaged over 16 different test cases.
Figure 12(b) compares the quality of the two features (k-
HMM output and network statistics) in terms of estimating
the occupancy states. The feature quality is measured using
normalized mutual information between the feature states
and the true occupancy labels. The figures show that the
k-HMM output has a better feature quality resulting in an
improved classification accuracy.

The estimated occupancy states for each cube are then
aggregated to estimate the occupancy of a zone. We fur-
ther show that the estimated zone occupancy using the pro-
posed 2-stage approach can be used to dynamically control
the lighting in that zone, resulting in an energy savings of
around 9.53%. More details on use of this approach to con-
trol lighting are provided in [3].

5. RELATED WORK

Commercial buildings consume a lot of energy [25], which
motivates research to improve building energy efficiency. As
discussed in Section 1, there are a variety of challenges to ad-
dress. The problem of selecting optimal locations for meter
placement can be framed as a budgeted optimization prob-
lem. This problem has been well studied in the literature in
different contexts, such as in the case of sensor placement
in a water distribution network [18] or observation selection
in an autonomous robotic exploration [15]. Several different
criteria have been proposed in the literature for selecting
these optimal locations [15]. The most popular among them
being mutual information [16, 17]. However, as we discussed
earlier, this constrained optimization problem with mutual
information as an objective function is known to be NP-
hard, and hence requires use of greedy, near-optimal strate-
gies to solve.

Examining data for anomalies is a known approach for
identifying abnormal system behavior. Catterson et al. use
this approach to monitor old power transformers [4]. Their
goal is to pro-actively search for abnormal behavior that
may indicate the transformer is about to fail. Li et al. [19]
search for anomalies in building power consumption, where
they employ simple statistical tests such as the Q-test to
detect time points with abnormal power usage. On the other
hand, Jakkula and Cook [11] demonstrate the superiority of
a clustering based approach over such simple statistical tests
in the context of identifying abnormal activities in household
power consumption data. Our work on anomaly detection
is built on observations in these studies.

Occupants of a building contribute to its energy footprint.
Unfortunately, directly tracking the number of people in a
building is often more difficult than one might think. To
estimate the occupancy, we create models based on data
retrieved from periodic scans of the computer network in
the campus. This is a similar approach to that of Newsham
and Birt [22]. Erickson et al. [7], Agarwal et al. [2], and
Kim et al. [12] model occupancy through a variety of means.
Rice et al. develop a model of building energy consumption,
to offer insights on where energy is used [23]. Hay and Rice
investigate how to assign power use to individuals, who may
be able to adjust their behaviors to reduce the aggregate
power consumption [10]. Our work is complementary.



6. CONCLUSIONS

Commercial buildings consume significant amounts of en-
ergy. Concerns over energy prices and global climate change
are motivating building operators to reduce energy consump-
tion. In this paper, we propose and evaluate three methods
to aid in this effort. Our meter placement algorithm is both
efficient and effective, guaranteeing a near optimal solution
to information maximization by exploiting submodularity.
In comparisons with other methods, the ability of the meter
set selected using our algorithm to predict the measurements
of the unselected meter set were found to be superior (by an
average of about 15%). Our anomaly detection method is
shown to identify numerous types of unexpected consump-
tion patterns. Lastly, our occupancy modeling approach can
be used to dynamically control lighting or HVAC resources,
thereby reducing their energy consumption.

We plan to extend our work in several ways. We intend to
leverage occupancy modeling results for enhancing anomaly
detection. Further, we plan to automate the anomaly char-
acterization task, and extend our algorithm to incorporate
feedback from a building administrator. In addition, we are
increasing instrumentation on our campus, to aid in validat-
ing our methods. Finally, further methods may be developed
as we evolve our test bed into a demonstrator.
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