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This  paper  presents  a practical  and  systematic  approach  to  correctly  provision  server  resources  in  data
centers, such  that  SLA  violations  and  energy  consumption  are  minimized.  In  particular,  we describe  a
hybrid method  for server  provisioning.  Our method  first  applies  a  novel  discretization  technique  on  his-
torical  workload  traces  to identify  long-term  workload  demand  patterns  that  establish  a  “base”  load.  It
then employs  two  techniques  to dynamically  allocate  capacity:  predictive  provisioning  handles  the  pre-
esource provisioning
ower management
ustainable computing
orkload analysis

dicted  base  load  at  coarse  time  scales  (e.g.,  hours)  and  reactive  provisioning  handles  any  excess  workload
at finer  time  scales  (e.g.,  minutes).  The  combination  of  predictive  and  reactive  provisioning  achieves  a
significant  improvement  in meeting  SLAs,  conserving  energy  and  reducing  provisioning  cost.

We  implement  and  evaluate  our  approach  using  traces  from  four  production  systems.  The  results  show
that  our  approach  can  provide  up to  35%  savings  in  power  consumption  and  reduce  SLA violations  by  as

o exis
much  as  21%  compared  t

. Introduction

Data centers are very expensive to operate due to the power
nd cooling requirements of IT equipment like servers, storage
nd network switches. As demand for IT services increases, the
nergy required to operate data centers also increases. The EPA
stimated that energy consumption in data centers exceeded 100
illion kWh  in 2011, at a cost of $7.4 billion [10]. Rising energy costs,
egulatory requirements and social concerns over green house gas
missions have made reducing power consumption critical to data
enter operators. However, energy efficiency is for naught if the
ata center cannot deliver IT services according to predefined SLA
r QoS goals, as SLA violations result in lost business revenue. For
xample, Amazon found that every additional 100 ms  of latency
osts them a 1% loss in sales, and Google observed that an extra
00 ms  in search page generation time reduced traffic by 20% [18].
ence, another challenge data center operators face is provision-

ng IT resources such that SLA violations are minimized, to prevent
usiness revenue loss. Today, SLA violations are often avoided by
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

ver-provisioning IT resources. This results in excessive energy
onsumption, and may  also lead to increased expenditure due
o capital overhead, maintenance costs, etc. Thus, an important
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ting  techniques,  while  avoiding  frequent  power  cycling  of  servers.
©  2012  Elsevier  Inc.  All  rights  reserved.

question in data center resource management is how to correctly
provision IT equipment, such that SLA violations are avoided and
energy consumption is minimized.

The correct provisioning of resources is a difficult task due
to variations in workload demands. Most data center workload
demands are very bursty in nature and often vary significantly
during the course of a single day. This makes it difficult to pro-
vision resources appropriately. A single size (static provisioning)
cannot fit all, and will result in either over-provisioning or under-
provisioning.

The solution we  propose in this paper is based on three impor-
tant observations. First, many workloads in data centers (e.g., Web
servers) exhibit periodic patterns (i.e., daily, weekly and seasonal
cycles). If we  can identify these patterns in the workload, we  can
then adjust the resource allocation accordingly, and hence improve
the accuracy of resource provisioning and reduce power consump-
tion. Second, demand patterns are statistical in nature, and there
will be deviations from historical patterns due to unforeseen fac-
tors such as flash crowds, service outages, and holidays. Though
the volume of such fluctuations is small compared to the total
demand, ignoring them completely can result in significant SLA vio-
lations. Third, provisioning is not free; there are various associated
costs and risks. Frequent provisioning incurs both performance and
energy penalties. For example, turning servers on can take a signif-
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

icant amount of time (up to several minutes) and consume a lot
of power (close to peak power consumption) [12]. Frequent power
cycling of servers causes “wear and tear”, which could result in
server failure and service outage(s) [8].

dx.doi.org/10.1016/j.suscom.2012.01.005
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Observation 1: The workload demands typically have significant vari-
ability. This makes it difficult to provision resources appropriately,
resulting in either over-provisioning or under-provisioning.
Fig. 1. Workload demand for a single day for (a) t

Based on the above observations, we propose a novel resource
rovisioning approach in this paper. Our main contributions are:

. We  present a detailed workload characterization study for three
real applications and provide insight about their properties: vari-
ability and periodicity.

. We  propose a novel analysis technique—“workload discretiza-
tion”, to determine the “base” workload demand for a service. In
particular, we propose a dynamic programming algorithm that
can accurately capture the demand while minimizing the costs
and risks from a provisioning perspective.

. We  develop a hybrid approach to provision IT resources: a
predictive provisioning approach handles the base workload
at coarse time scales (e.g., hours) and a reactive provisioning
approach handles any excess demand at finer time scales (e.g.,
minutes). A coordinated management of these two approaches
achieves a significant improvement in energy efficiency without
sacrificing performance.

. We  implement our server provisioning system and evaluate
it using empirical workload traces. The results reveal that
our workload discretization algorithm better estimates the
long-term workload demand from a resource provisioning per-
spective, and our hybrid provisioning system is superior to
existing approaches in terms of meeting the system’s SLA
requirements while conserving power, reducing provisioning
cost and avoiding frequent power cycling of servers.

The rest of the paper is organized as follows. Section 2 exam-
nes the demand distribution and properties of several workload
races from production systems. Section 3 describes our workload
iscretization technique and Section 4 presents our hybrid provi-
ioning approach. Section 5 discusses our experimental evaluation.
ection 6 reviews related work and finally Section 7 concludes the
aper with a summary of our work and a description of future
irections.

. Workload characterization

To understand real data center workload demands, we begin
ith a detailed workload characterization of three types of appli-

ations.

.1. Workload trace descriptions
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

. SAP. We obtained a five-week-long workload demand trace of
an SAP enterprise application. The trace was obtained from a HP
data center that hosts enterprise applications such as customer
relationship management applications for small and medium
P trace; (b) the VDR trace; and (c) the Web  trace.

sized businesses. The trace captures average CPU and memory
usage as recorded every 5 min.

2. VDR. VDR is a high-availability, multi-tier business-critical HP
application serving both external customers and HP users on six
continents. The VDR data set includes both transaction records
(e.g., arrival rate information) and system resource utilization
measurements collected at application server and database
server tiers. The ten-day-long trace contains 5-min average data.

3. Web  2.0. We  obtained data from a popular HP Web  service appli-
cation with more than 85 million registered users in 22 countries.
The service caters to over 10 million users daily. The trace con-
tains five days worth of machine-level statistics from about 200
servers located in multiple data centers.

2.2. Variability

Most data center workload demands are very bursty in nature
and often vary significantly during the course of a single day. We
now analyze the variability in workload demands of the above
traces.

Fig. 1 shows 24-h workload demand (CPU usage) traces for the
SAP, VDR and Web  applications. The demand has been normalized
by the maximum demand in each trace. We  see that the workload
demand varies a lot. For example, the SAP trace demand of that
day varies from a minimum of almost 0 to a maximum of approx-
imately 0.8 of the peak demand in the 5-week trace. Fig. 2 shows
the maximum, 90%ile and mean demand for each workload trace.
We see that the maximum demand is typically 4–5 times higher
than the corresponding mean demand, suggesting huge variations
across the trace time-series. For all traces, the 90%ile value is much
higher than the mean value, suggesting that demand values are
highly variable. This brings us to our first observation:
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

Fig. 2. Variability in the workload demands.

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 3. Workload demand for 2 h for (a) the S

The workload variability can be clearly seen in Fig. 3. Each graph
hows periods where demand values exhibit large local variations.
or example, the SAP trace (Fig. 3(a)) shows an initial demand of
.2 at 7:15 am,  which increases to 0.7 by 8:10 am,  then decreases
o 0.4 by 8:20 am.  Even consecutive demand values vary by a factor
s much as 2–3. The VDR and Web  traces (Fig. 3(b) and (c)) show
imilar variability. This leads to our second observation:

bservation 2: Workload demands can change abruptly during short
ntervals. An important implication of this is that to handle such
ariations, a provisioning mechanism is required at short time-
cales.

.3. Periodicity

Though there is large variability in workload demands, most
orkloads and in particular interactive workloads, exhibit clear

hort-term and long-term patterns that help in describing their
ehavior.

To capture these patterns, we perform a periodicity analysis of
he workload demand traces to reveal the length of a pattern or a
equence of patterns that appear periodically. We  use Fast Fourier
ransform (FFT) to find the periodogram of the time-series data
5]. From this we derive periods of the most prominent patterns or
equences of patterns.

Fig. 4(a) plots the time-series and the periodogram for five days
f the SAP trace. The peak at 24 h in the periodogram indicates that
he SAP trace has a strong daily pattern (period of 24 h).

Likewise, Fig. 4(b) and (c) plots the time-series and the peri-
dogram for five days of CPU demand collected from the VDR
nd Web  application, respectively. The time-series plots and peri-
dograms indicate that both the VDR trace and the Web  trace also
ave a strong daily pattern.

bservation 3: The workloads exhibit prominent daily patterns. Based
n this, we now consider how to identify and discretize such pat-
erns.

. Workload discretization

In Section 2, we showed that IT workloads often exhibit daily
eriodic patterns with a small percentage of noise (e.g., frequent
nd sporadic spikes). This section presents novel techniques to
dentify and discretize such patterns in historical workloads traces.

Our algorithms partition the workload demand into disjoint
ime intervals, such that within each time interval, the demand
aries only slightly. A single representative demand value (e.g.,
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

ean or 90th percentile demand) is then chosen for each inter-
al. We  propose a dynamic programming algorithm to find a small
umber of time intervals and representative demand for each, such
hat the deviation from real demand is minimized. Keeping the
ce; (b) the VDR trace; and (c) the Web  trace.

number of intervals small is important, as more intervals imply
more frequent provisioning changes and thus higher risks and
costs. Compared to fixed-sized intervals used in existing solutions,
variable-sized intervals describe the workload demands better. We
also consider the provisioning cost, which is ignored by existing
approaches.

3.1. Discretization

Our goal is to represent the daily pattern in workloads by dis-
cretizing their demands into consecutive, disjoint time-intervals
with a single representative demand value in each interval. We
now formally define discretization.

Workload discretization: Given the demand time-series X on the
domain [s, t], a time-series Y on the same domain is a workload char-
acterization of X if [s, t] can be partitioned into n successive disjoint
time intervals, {[s, t1], [t1, t2],. . .,  [tn−1, t]}, such that X(j) = ri, some
fixed demand, for all j in the ith interval, [ti−1, ti].

Note that, by definition, any time-series, X, is a discretization
of itself. For our purposes, we set s = 0 and t = period of workload.
In the follow discussion, we assume a period of 24 h, based on our
periodicity analysis.

The idea behind discretization is two-fold. First, we want to
accurately capture the demand. To achieve this, the representative
values, ri, for each interval, [ti−1, ti], should be as close as possible to
the actual demand values of the time-series in the interval [ti−1, ti].
We determine the demand estimation error incurred by discretiza-
tion, which we define as the percentage of the area between the
original time-series and the discretized time-series with respect to
the area under the original time-series.

Second, provisioning of IT resources is not free [8].  For this rea-
son, we  want to avoid having too many intervals and hence too
many changes to the system, as this is not practical and can lead to
many problems. For example, turning on additional servers to han-
dle increasing demand takes time (up to 2 min  in our experiments)
and consumes substantial amounts of power during boot up [12].
As a result, frequent provisioning changes incur performance and
energy penalties and lead to wear and tear of servers in the long
run. Too many changes can also result in system instability.

In summary, the discretization should be as close as possible to
the original time-series and should be represented by as few con-
stant pieces as possible. In other words, we want to minimize the
estimation error and the number of intervals in the discretization.

3.2. Fixed interval approach
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

The easiest way to discretize the daily demand pattern is to
use a single interval, [0,86400 s] (24 h), and a single represe-
ntative value, r, for that interval. The question then is what r should

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 4. Time-series and periodogram for (a) the
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

e. Fig. 5(a)–(c) plots the single interval discretization with r being
he maximum (Max), 90th percentile (90%ile) and Mean, respec-
ively, for the SAP trace. The graphs show that all three approaches
erform poorly. Max  and 90%ile significantly over-estimate the

Fig. 5. Discretization f
race; (b) the VDR trace; and (c) the Web  trace.
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

demand, whereas Mean incurs regions where the demand is over-
estimated and regions where it is under-estimated. The errors of
Max, 90%ile and Mean are 191%, 137% and 82%, respectively. This is
expected, since the workload is bursty; thus a static size will not fit.

or the SAP trace.

dx.doi.org/10.1016/j.suscom.2012.01.005
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The obvious next step is to consider multiple interval
pproaches similar to piecewise aggregate approximation (PAA)
30]. Fig. 5(d)–(f) plots the discretization results for interval lengths
f 6 h, 3 h and 1 h, respectively. We  use Mean as the representative
emand in each interval. As expected, the provisioning error goes
own as the interval size decreases. However, decreasing the inter-
al size increases the number of intervals, which could increase the
umber of provisioning changes. As previously discussed, this is
ndesirable. Thus, there is a clear trade-off between provisioning
rror and the number of intervals. We  observed similar results for
he VDR trace and the Web  trace.

.3. Variable interval approach

Owing to the limitations of the fixed interval approach, we now
onsider variable-sized intervals. The motivation behind variable
ized intervals is that a change in demand can happen at any point
f time, and not just at specific hours. Thus, by using variable-sized
ntervals, we can capture the arbitrary moments in time when the
emand changes.

.3.1. K-means
K-means is a clustering approach that discretizes the work-

oad demand values into k clusters. For example, when k = 3, each
orkload demand reading is classified into high, medium, or low.
-means is widely used in data mining for cluster analysis. It works
y partitions the given data into k clusters, such that the total sum,
ver all k clusters, of the difference between a data point and the
ean of the cluster, is minimized. Mathematically, given a set of n

ata points, X = {x1, x2,. . .,  xn}, K-means aims to partition X into k
ets, S1, S2,. . .,  Sk, so as to minimize:

k

i=1

∑
xj ∈ Si

(xj − �i)
2, (1)

here �i is the mean of points that belong to set Si.
In doing so, each data point is classified into the group it most

losely resembles. In our case, by using K-means, we can classify
ur demand values into k levels, such that each data point can be
ssociated with one of these levels.

While K-means is very useful for detecting clusters of similar
alues, it is not obvious how we can best use K-means to discretize
he workload. In our experiments, we first use K-means to come
p with k demand levels. We  then walk through the demand trace,
nd partition it into intervals such that most of the points within an
nterval have the same load level. If a sequence of points with the
ame load level is followed by another sequence of points with a
ifferent load level, then we classify the respective sequences into
ifferent intervals. Once the entire workload trace is partitioned

nto intervals, we use Mean as the representative demand for each
nterval. This gives us the discretization for the workload trace using
-means.

Fig. 5(g) plots the K-means discretization for the SAP trace, with
 = 3. We  see that the K-means approach obtains a lower error
han the “Mean/3 h” approach and uses fewer intervals. This clearly
hows that allowing the interval length to vary helps in lowering
he estimation error. We  examined other values of k as well, but
ound that k = 3 provides the best tradeoff between estimation error
nd number of intervals.

.3.2. SAX
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

SAX [17] is another discretization approach, specifically for
ime-series data. While SAX is widely used for compressing time-
eries data, it is also very popular for cluster analysis. In SAX
Symbolic Aggregate approXimation), the time-series domain (24 h
 PRESS
matics and Systems xxx (2012) xxx–xxx 5

in our case) is first partitioned into equal-sized intervals, similar
to the fixed interval approach. For example, by choosing an inter-
val size of 1 h, SAX partitions the time-series domain into 24 one
hour intervals. Next, SAX computes the mean value for each of
these intervals. Finally, these mean values are clustered, e.g., using
K-means. Each of these clusters is then represented by a symbol,
e.g., an alphabet, and the whole time-series is now approximated
by a concatenation of these symbols.

Our primary goal is to partition the time-series into a few inter-
vals, so as to minimize the estimation error. Thus, we can use SAX to
determine the clusters for our workload trace. These clusters pro-
vide us with the demand levels for the trace. We  now discretize the
workload trace using these demand levels. Specifically, we start by
converting each cluster into a single interval and then use Mean
to represent the value of that interval. We  now walk through the
trace and if successive intervals have the same mean value, we
group them into a single interval. We  repeat the above process until
we converge to a minimum number of intervals. At this point, the
resulting partitioning of our trace into intervals forms our workload
discretization using SAX.

Fig. 5(h) plots the SAX discretization for the SAP trace. We  see
that while SAX has relatively low estimation error, it results in 44
intervals. This is because SAX is not tailored to minimize the num-
ber of intervals. Thus, while SAX accurately estimates the demand,
it is not practical for use in resource provisioning, as 44 intervals
means 43 changes.

3.3.3. Dynamic programming
Thus far we have seen approaches that provide a clear trade-off

between the provisioning error and the number of changes. This
section presents our novel Dynamic Programming (DP) approach
to discretize the time-series such that we reduce both.

n∑
i=1

ti∑
t=ti−1

(X(t) − ri)
2 + f (n). (2)

Eq. (2) is the objective function we  want to minimize, where X is
the time-series and f(n) is a cost function of the number of changes
or intervals, n. The goal of Eq. (2) is to simultaneously minimize the
workload representation error and the number of changes. In some
cases, one might prefer to minimize the square of the number of
changes (or some other function of the number of changes). For this
paper, we  set, where c is a normalization constant, which we will
discuss later. The objective function expresses the goal as minimiz-
ing the normalized number of changes and the representation error.
The Mean-squared error is used to quantify the workload represen-
tation error. Note that in the most general case, both the number of
changes and the representational error could be formulated as util-
ity functions. We  use dynamic programming, which is well suited
to minimize the objective function given in Eq. (2). Minimizing the
Mean-squared error for a given partition results in setting ri to be
the mean of the time-series values on that partition. That is:

min  .

ti∑
t=ti−1

(X(t) − ri)
2

⇒ d

dri

ti∑
t=ti−1

(X(t) − ri)
2 = 0

⇒ ri =
∑ti

t=ti−1
X(t)

ti − ti−1 + 1

.  (3)
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

Thus, we  only need to partition the time-series domain, [t0 = 0,
tn = 24 h], to optimize the objective function. Let us assume that we
have the optimal partition of the domain [t0, tn], and it is {[t0, t1],
[t1, t2],. . .,  [tn−1, tn]}. Now, consider the optimal solution for the

dx.doi.org/10.1016/j.suscom.2012.01.005
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omain [t0, tn−1]. We  claim that this is simply {[t0, t1], [t1, t2],. . .,
tn−2, tn−1]}. This is because if the optimal solution for the domain
t0, tn−1] was different, then we could just append the partition
tn−1, tn] to it, and that should give us a solution for the domain [t0,
n] with a lower objective function value than {[t0, t1], [t1, t2],. . .,
tn−1, tn]}, which is a contradiction. Thus, the optimal solution for
he domain [t0, tn] contains the optimal solution for the domain [t0,
n−1]. Thus, this problem exhibits the optimal substructure prop-
rty, and dynamic programming will result in an optimal solution.
ote that even in the case of highly irregular traffic where no pat-

erns can be found, the dynamic programming solution will still
utput a workload characterization. In particular, the workload
haracterization will simply be a single value, e.g., the mean or
esired percentile of the observed demand, over the entire domain
t0, tn]. Thus, the dynamic programming solution is robust to irreg-
larities in the demand pattern.

We now mention a rule of thumb to pick the normalization con-
tant c. Note that the single interval approach with Mean as the
epresentative value gives our objective function a value of:

ar =
tn∑

t=t0

[X(t) − Mean(X)]2, (4)

here Var is the variance of the time-series under consideration, X.
y allowing a finite number of changes, say z, we want to ensure that
e can reduce the representation error in our objective function by

t least Var/2. Further, this new objective function must be smaller
han Var.  Thus, we want:

Var

2
+ c · z < Var ⇒ c <

Var

2 · z
,  (5)

hus, for example, setting z = 2 results in c < Var/4. For simplic-
ty, we set c = Var/4 in our dynamic programming solutions. In
eneral, a larger value of z may  result in a smaller representa-
ion error at the cost of an increase in the number of changes,
hereas a smaller value of z may  result in a larger representa-

ion error at the cost of a decrease in the number of changes. The
hoice of z in a real data center will depend on how often the
ystem administrator is willing to power cycle the servers. We
xpect a power cycling frequency of once every 4–6 h to be accept-
ble. Thus, z < 5 should be an acceptable value for a 24 h demand
race.

Fig. 5(i) plots the discretization of the SAP trace using our DP
pproach. The results show that the DP approach achieves a lower
rror than K-means with fewer intervals. Compared to the SAX
pproach the error is slightly higher, but the number of intervals is
uch smaller (3 versus 44). We  observe similar results for the VDR

nd Web  traces. That is, the DP approach accurately estimates the
emand using fewer intervals. This makes the DP approach a more
ractical technique for resource provisioning.

. Hybrid provisioning

Sections 2 and 3 show that although workload demands are
ursty, there are predictable patterns in them. Resource provision-

ng based on these patterns can improve accuracy significantly.
owever, there can still be some deviations from these patterns due

o the bursty nature of data center workload demands. In particular,
xcess workload demand or a sudden spike in demand can cause
erformance problems. Also, there is a cost and risk associated with
rovisioning changes, and thus, we want to avoid frequent provi-
ioning changes. Based on these observations, we propose a Hybrid
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

rovisioning solution, which combines predictive provisioning with
eactive provisioning.

The intuition behind our approach is that we  capture periodic
nd sustained workload patterns from historical data, which we
 PRESS
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refer to as the base workload and then proactively (and predic-
tively) provision for them. At run time, the deviation between the
actual and predicted base workloads, which we  refer to as the noise
workload, is handled by reactive provisioning, which is invoked
each time the request rate exceeds our prediction. Our solution also
takes into account the costs and risks associated with provisioning.

4.1. Server farm provisioning

While our approach can be applied to general capacity plan-
ning and resource allocation problems, we  consider a class of very
important and popular applications in today’s data centers: Web  or
enterprise applications which are hosted by a large pool of servers
(e.g., tens of thousands of servers). Examples of such applications
include Web  search, online shopping, social networking services
and business transactional services. Millions of users interact with
such applications, by sending requests to the servers hosting the
applications. Each application has an associated response time tar-
get that needs to be met. The actual performance of an application
is determined by the resource capacity allocated to the application,
i.e., the number of servers, and the workload intensity (or request
rate). Given the response time target for an application, our goal
is to determine the optimal number of servers for the application
to meet its target without over-provisioning resources and thus
wasting power.

4.2. Overview of hybrid provisioning

Fig. 6 depicts the conceptual architecture for how to combine
predictive provisioning and reactive provisioning for server farms.
Our solution comprises of four components.

1. A base workload forecaster analyzes historical workload traces
(Fig. 6(a)) and identifies the patterns that form the base work-
load. We  represent the patterns in a workload by discretizing it
into consecutive, disjoint time intervals with a single represen-
tative demand value (e.g., mean or 90th percentile demand) in
each interval (Fig. 6(b)).

2. A predictive controller proactively estimates and allocates the
proper amount of capacity (e.g., the number of servers) needed to
handle the base workload. For example, given the base demand
(e.g., time varying request rate in Fig. 6(b)), it generates the
capacity allocation (e.g., number of servers in Fig. 6(c)).

3. A reactive controller handles excess demand by adding additional
capacity at short time scales (e.g., # of servers in Fig. 6(d)), in
response to excess workload that is beyond the base workload,
i.e., the difference between the actual workload and forecasted
base workload.

4. A coordinator dispatches workload requests to servers and also
communicates with the predictive and reactive controllers to
provide information about incoming demand. When the actual
workload (e.g., requests in Fig. 6(e)) arrives, the dispatcher
assigns the portion of the workload not exceeding the base work-
load (e.g., requests in Fig. 6(f)) to resource pool 1 and any excess
workload (e.g., requests in Fig. 6(g)) to resource pool.

The next few subsections describe the various components.

4.3. Base workload forecaster

The base workload forecaster first performs a periodicity analy-
sis of the workload demand to reveal the length of a pattern or a
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

sequence of patterns that appear periodically. We  use Fast Fourier
Transform (FFT) to find the periodogram of the time-series data [5]
from historical data. From this, we derive the periods of the most
prominent patterns. For example, the periodograms from Fig. 4

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 6. Hyb

eveal that our traces have a strong daily pattern (period of 24 h).
he base workload forecaster runs periodically (e.g., once a day).
t divides the historical data into daily demands and forecasts the
emand for the next day. To forecast the workload, we  can just take
he average of the mean historical daily demand. Advanced forecast
echniques can be used, but are out of the scope of this paper [13].
ext, we identify and discretize patterns in the forecasted workload
emand. Our goal is to represent the daily pattern in workloads by
iscretizing their demands into consecutive, disjoint time-intervals
ith a single representative demand value in each interval. As dis-

ussed in Section 3, we want to find a small number of time intervals
nd representative demand for each, such that the deviation from
ctual demand is minimized. Keeping the number of intervals small
s important, as more intervals imply more frequent provisioning
hanges and thus higher risks and costs. Thus, we use our dynamic
rogramming workload discretization approach from Section 3.3.3
n the mean historical daily demand to get the base workload.

.4. Predictive controller

The predictive controller is responsible for handling the base
orkload. It receives the predicted base workload pattern (i.e., the

utput of discretization) from the base workload forecaster and then
roactively estimates and allocates the proper amount of capacity
equired to handle the base workload. In particular, the controller
ses a queueing performance model to determine how much capac-

ty will be allocated to ensure that the SLA requirements are met
or the forecasted demand without consuming excessive power.

We  assume that a certain mean response time target (SLA
equirement), t0, in seconds, is given. Recall that our goal is to min-
mize power consumption while ensuring that we meet the mean
esponse time target. We  use an M/G/1/PS queuing model to esti-
ate the number of servers needed. Assuming that demand follows
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

 Poisson distribution with a mean request rate � requests/s, we
ave:

1
(1/s)  − (�/k)

< t0, (6)
ovisioning.

where s is the mean job size in seconds, and k is the number of
servers. From Eq. (6),  we  derive:

k =
⌈

�

(1/s)  − (1/t0)

⌉
. (7)

Eq. (7) estimates the number of servers needed to ensure that the
mean response time target is met. While the assumptions behind
Eq. (7) may  not be ideal for real-world data center workloads, they
provide a good approximation, as we will see in Section 5.2.  Though
important, performance and capacity modeling is not the focus of
this paper. Note that the capacity allocated by the predictive con-
troller is not affected by actual demand and will not change until a
new base workload forecast arrives.

4.5. Reactive controller

Though many application workloads have predictable time
varying demands, actual demands are statistical in nature and are
likely to differ from the forecast. For example, the demand for the
target day may  vary from the historical demand due to unforeseen
factors such as flash crowds, service outages, holidays, etc. Thus, we
integrate a reactive controller to handle the noise in the demand.
A reactive controller is invoked each time the actual workload
demand is higher than the base workload, to provide additional
resources for the excess workload demand. Since the reactive con-
troller is not invoked when the actual demand is lower than the
base workload forecast, the impact of over-provisioning is mini-
mized if the predictive provisioning captures the base demand well.
The results in Section 5 show that this hybrid approach works very
well in practice.

We use a simple feedback approach with a fixed monitoring
interval length to estimate the amount of noise in the workload.
For example, if the monitoring interval length is 10 min, then
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

we estimate the noise (workload demand above the predicted
base demand) in the next 10 min  interval to be the same as the
noise in the current 10 min  interval [6].  While more sophisticated
approaches, such as ARMA or moving window [9],  can be used for

dx.doi.org/10.1016/j.suscom.2012.01.005
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oise estimation, we find that a simple feedback based approach is
ery efficient and works well in practice for noise estimation. Note
hat errors in noise estimation will only affect the noise provision-
ng; the base workload demand will not be affected.

.6. Coordinator

We logically divide a server pool into two partitions. One
andles the base workload and is managed by the predictive
ontroller. The other handles the noise (excess) workload and
s managed by the reactive controller. These two server farms
an (and probably will) physically co-exist. The coordinator for-
ards incoming requests to either the server farm dedicated to the

ase workload or the server farm dedicated to the noise (excess)
orkload, based on the predicted base demand and the actual
emand. A simple scheme for dispatching requests is to simply

oad-balance the incoming requests among all servers irrespec-
ive of which server farm they belong to. Under this scheme,
ll jobs are treated equally. However, one can imagine a more
ophisticated dispatching scheme which allows certain important
obs to receive preferential service over other jobs by dispatch-
ng the important jobs to the (more robust) base workload server
arm. For example, for e-commerce sites such as Amazon or eBay,
t might make more sense to prioritize shopping requests over
rowsing requests. In such cases, shopping requests can be dis-
atched to the server farm that handles the base workload. This
erver farm is less likely to incur provisioning changes and can
hus provide uninterrupted service. The less important browsing
equests can now be dispatched to either the base workload server
arm, if there is available capacity, or to the noise workload server
arm.

We now discuss the above dispatching schemes in more detail.

.6.1. Load balancing dispatcher
For this scheduling scheme, the number of servers is provisioned

ased on the output of the predictive and reactive provisioning as
escribed in Sections 4.4 and 4.5,  respectively. Then, we  simply

oad balance the incoming requests across the available servers.
hus, using Eq. (7),  if the predictive provisioning sets n1 servers for
he base workload and the reactive provisioning sets n2 servers for
he noise workload, then we simply load balance the incoming jobs
mong the (n1 + n2) servers.

.6.2. Priority dispatcher
This dispatcher ensures that the base workload receives guar-

nteed performance by filtering the request rate into the base
orkload server farm and sending excess requests to the server

arm dedicated for the noise. The priority scheduler forwards and
oad balances the job requests to the base provisioning servers
the n1 servers in the previous example) as long as the request
ate is below the forecasted base workload request rate. However,
equests that exceed the forecasted request rate are forwarded
o the reactive provisioning servers (the n2 servers in the pre-
ious example). This can be achieved by monitoring the request
ate every few seconds, and re-routing the incoming requests to
he respective servers as required. For example, if the incoming
equest rate in the last monitoring interval was above the fore-
asted request rate by 10%, then we forward 10% of the incoming
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

equests to the reactive provisioning servers. Compared to load bal-
ncing scheduling, this solution isolates the base workload from the
oise workload, and provides stronger performance guarantees for
he base workload.
 PRESS
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5.  Evaluation

This section evaluates our workload discretization and hybrid
provisioning approaches via analytical trace analysis in Section 5.1
and via experimentation on a real test bed in Section 5.2.

We first present trace-based analysis results for different
application traces and show that our hybrid server provisioning
approach is superior to existing provisioning approaches. We  then
present our experimental results based on a real test bed imple-
mentation, which resemble our analysis results, and thus validate
our trace-based analysis findings. We  obtain workload demand
traces from three real applications in HP data centers that were
described in Section 2.1 and the WorldCup98 demand trace from
the Internet Traffic Archives [31]. The first three traces exhibit
prominent daily patterns but also vary significantly during the
course of a single day. The WorldCup98 trace is less predictable,
with peak demands influenced by factors such as the outcome of
matches, which are difficult to predict.

5.1. Trace-based analysis

5.1.1. Methodology
This section evaluates our hybrid approach on different work-

load traces via an analytical approach. In particular, given a trace,
we apply different workload discretization techniques from Section
3 on historical workload demand (e.g., days 1–7) to predict work-
load demand for a target day (e.g., day 8). Further, we  consider
different provisioning policies, predictive, reactive and hybrid, to
provision resources for a single tier Web  server farm. We  assume
each server has a fixed capacity and the number of servers required
is the predicted demand divided by the server capacity. Lastly, we
compare the different provisioning policies using the following
metrics: percentage of SLA violations, total power consumption,
and the number of provisioning changes.

If the actual demand for an interval exceeds the allocated capac-
ity, then that interval is under-provisioned and is counted as an SLA
violation. Note that interval here refers to the monitoring interval
of the original workload traces. We  use a linear model to estimate
the power consumption of a server. The model expresses the power
consumption, P, of a server that is x% utilized as:

P = Pidle

(
x

100
· (Pmax − Pidle)

)
, (8)

where Pidle and Pmax are the power consumption of the server when
it is idle and when it is 100% utilized, respectively. Pidle and Pmax

are derived experimentally (described in Section 5.2.1). As requests
are load-balanced across servers, the utilization of each server is
expected to be equal. Finally, we track the number of provisioning
changes, i.e., number of times we change the server farm capacity,
throughout the target day.

5.1.2. Provisioning policies
We now briefly describe the different provisioning policies. The

Predictive policy provisions servers for the target day based on the
90%ile of the demand values for the past seven days. We  con-
sider four provisioning intervals for the predictive policy: 24 h, 6 h,
1 h and variable length intervals. For example, the Predictive/1 h
approach considers the corresponding 1 h demand trace portions
from each of the past 7 days and uses the 90%ile demand of these
portions as the representative demand value for that hour of the
target day. We  note that Predictive/24 h represents static resource
provisioning, i.e., no changes to the resource allocation are made
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

during the day. The Predictive/var approach uses variable intervals
from the workload discretization. The Reactive approach monitors
the demand for 10 min  and uses a feedback approach to provi-
sion servers for the next 10 min  assuming the demand to remain

dx.doi.org/10.1016/j.suscom.2012.01.005
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ig. 7. Trace-based analysis results for the SAP trace showing the SLA violations,
ower consumption and number of provisioning changes.

he same as in the last interval. We  study two hybrid approaches:
he Hybrid/fixed policy does predictive provisioning every hour
nd invokes reactive provisioning each time the predictive provi-
ioning underestimates demand; and the Hybrid/var approach that
ombines predictive provisioning with variable intervals and reac-
ive provisioning as described in Section 3. We  choose the 90%ile
emand for all predictive approaches since the 90%ile provides a
ood tradeoff between resource consumption and quality. It leads
o significant savings with relatively few SLA violations, as shown
n Sections 2 and 3.

.1.3. Results
Fig. 7 shows the SLA violations, power consumption and num-

er of provisioning changes for the SAP trace. First, among the four
redictive approaches, using variable intervals achieves the best
alance of performance and power. The percentage of violations

s comparable to the Predictive/24 h approach, but the power con-
umption is 30% less. The power consumption of Predictive/var is
imilar to that of Predictive/6 h and Predictive/1 h, but the perfor-
ance is much better and the number of provisioning changes

s smaller. We  note that reducing the interval length, i.e., more
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

requent provisioning, helps to reduce power but increases SLA
iolations.

Second, our Hybrid/var approach out-performs all predictive
pproaches. Compared to Predictive/var,  Hybrid/var reduces SLA
 PRESS
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violations from 7.3% to 5.6% while using a similar amount of power.
The reduction in SLA violations results from the integration of the
reactive provisioning to handle demand exceeding the predicted
base demand.

Third, both hybrid approaches perform significantly better than
the Reactive approach in terms of meeting SLA requirements. The
Reactive approach has the highest percentage of violations. There
are two  reasons for this. First, the workload is highly variable and
abrupt changes in short intervals are difficult to track. Second, it
takes time to set up a server and thus the Reactive approach can-
not react faster than the server setup time. Between the two  hybrid
approaches, our Hybrid/var approach outperforms Hybrid/fixed. In
particular, by using variable intervals for predictive provisioning,
Hybrid/var reduces SLA violations from 10.1% to 5.6% and the num-
ber of changes from 43 to 14. At the same time, power consumption
stays the same. This further shows the effectiveness of our DP based
workload discretization algorithm.

In summary, compared to purely predictive and reactive
approaches, our Hybrid/var approach achieves better performance
and conserves power. The Hybrid/var approach consumes 27% less
power than the Predictive/24 h approach, which has similar perfor-
mance. Compared to the Reactive approach, the Hybrid/var reduces
SLA violations from 50% to 5.6%. Hybrid/var outperforms a hybrid
approach with fixed provisioning intervals in terms of SLA viola-
tions and power consumption. Finally, Hybrid incurs 14 changes,
less than one every hour, which is considered acceptable in practice.

To further understand how these different approaches allo-
cate resources in response to workload demand changes, we show
time series of the demand, the number of SLA violations per
hour, the power consumption, and the number of active servers
in Fig. 8. We  see that the Reactive approach makes many pro-
visioning changes and incurs many violations, since a change in
provisioning is triggered by either an under-provisioning or an
over-provisioning in the previous interval. The figure shows that
our Hybrid/var approach captures most of the incoming workload
demand. Thus, only a few changes are triggered by the reactive
part of our approach. However, there are instances when the reac-
tive controller is invoked, for example, around 2–3 am.  This again
justifies that a hybrid approach is required to handle real-world
workload traces.

We conduct a similar analysis study for the Web  application
trace. The results for the Web  trace are shown in Fig. 9. For the
Web  trace, shorter intervals for predictive provisioning reduce the
SLA violations and power consumption, which is different from the
results of the SAP trace. However, the Predictive/var approach is
still among the best of all four predictive approaches. Also, impor-
tantly, our Hybrid/var approach provides the best tradeoff between
SLA violations, power consumption and the number of provisioning
changes among all policies.

In Section 2.3, we  observed that the SAP, VDR and Web  traces all
had strong daily patterns. To explore the robustness of our hybrid
provisioning technique, we  now analyze traces of the WorldCup98
Web  site. A characterization presented in [3] shows that this work-
load was  less predictable, with peak demands influenced by factors
such as the outcome of matches, which could not be predicted. In
this workload, the peak demands exceeded the average demand per
minute by a factor of up to 19. Our analysis results using the World-
Cup98 trace are shown in Fig. 10.  As with the SAP, VDR and Web
traces, shorter intervals for predictive provisioning reduce the SLA
violations and power consumption. The reactive approach suffers
the most SLA violations and causes the most provisioning changes
but consumes the least amount of power. The Hybrid/var approach
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

incurs fewer SLA violations than all of the other approaches except
Hybrid/fixed. However, Hybrid/fixed triggers about 5 times more
provisioning changes than Hybrid/var.  In summary, we  conclude
that the Hybrid/var method is reasonably robust to unpredicted

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 8. Time-series for the demand, SLA violations, pow

uctuations in the demand, and provides the best tradeoff between
LA violations, power consumption and number of provisioning
hanges.

.2. Experimental results on a real testbed

The trace-based analytical results show the theoretical benefits
f the Hybrid approach over existing server provisioning policies.
o verify our claims and ensure that we have a practical and
obust solution, we implement a provisioning system that dynam-
cally allocates the number of active servers for a server farm that
rocesses jobs or transaction requests. We  validate our Hybrid
pproach, in particular the Hybrid/var policy, against other policies
sing the real-world workload demand traces described in Section
.1.

.2.1. Experimental setup
We set up a test bed of a single-tier server farm application.
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

ur test bed includes 10 blade servers. Each server has two
ntel Xeon E5535 quad-core processors running at 2.66 GHz,
nd 16 GB of memory. One server was used as a front-end load
enerator running httperf [20]. Another server was employed as
sumption and the number of servers for the SAP trace.

a proxy/load-balancer, which distributes jobs and requests among
the remaining eight Apache web servers.

We use httperf to replay the workload demand traces in the
form of CGI requests. We  first take the real trace data and scale
the workload demand suitably to match our server farm capacity,
since most of the traces were collected from production systems
running thousands of servers. We  then use httperf to replay the
CGI requests according to the scaled request rate. Note that indi-
vidual requests are generated according to the request rate defined
in the trace file and the workload generation is independent of the
web server setup and performance. In particular, the sequence and
rate of requests generated via httperf is independent of the server
provisioning policy employed. In the experiments, when different
provisioning policies are compared, all the executions are driven by
the same trace file at the same rates and hence the workload pro-
files for all executions are exactly the same. We  use two trace files
in our experiments: Web  and VDR. Fig. 11 shows the time varying
request rates for these traces for the test day.
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

Each request is directed, via the load-balancer, to one of the
eight back-end machines. Business logic processing in enterprise
and Web  applications is often the bottleneck and the workloads
are often processor intensive. The CGI script runs LINPACK [19], a

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 9. Trace-based analysis results for the Web  trace showing the SLA violations,
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5.2.2. Results
We  evaluate four different polices: Predictive Mean/1 h, Predic-
ower consumption and number of provisioning changes.

ulti-threaded CPU bound program, to simulate the request or job
rocessing in real applications. By adjusting the LINPACK job sizes,
e can easily model the variability of service times in real appli-
Please cite this article in press as: A. Gandhi, et al., Hybrid resource pr
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

ations [11]. We  use the blade servers’ built-in management pro-
essor to turn servers on and off remotely and programmatically,

Fig. 11. Request rate traces for (a) Web  an
Fig. 10. Trace-based analysis results for the World Cup 98 trace showing the SLA
violations, power consumption and number of provisioning changes.

and to obtain server power consumption readings. We  collect
response times from httperf logs.
ovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

tive 90%ile/1 h, Reactive and our Hybrid approach (Hybrid/var). The
predictive provisioning policies use the corresponding 1 h demand

d (b) VDR used in our experiments.

dx.doi.org/10.1016/j.suscom.2012.01.005
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Fig. 12. Experimental results for the Web  trace.

race portions from the past days (Mean and 90%ile respectively) to
redict the demand for the hour of the target day. Reactive provi-
ioning invokes the reactive controller every 10 min  and employs a
imple feedback model that provisions servers for the next 10 min.
or all policies and a given response time target, the number of
ctive back-end servers is determined by the performance model
escribed in Section 4.4.

This section shows experimental results based on the Web  and
DR trace demands.

(a) Web  trace: We  conducted an experiment using the normalized
workload demand for the Web  trace. We  scaled the demand
trace to ensure that the 8 back-end servers can handle the peak
demand without violating the response time SLA. Fig. 12 shows
our experimental results of performance, power consumption
and number of provision changes for the Web  trace. The perfor-
mance is the average response time normalized by the target
response time, and the power consumption is normalized by
the power consumption of our hybrid approach. We  see that
the Predictive Mean/1 h does not provision sufficient capacity
for the workload demand while the Predictive 90%ile/1 h tends to
over-provision capacity. The Reactive policy misses its response
time target due to the lag in booting additional servers. By con-
trast, our Hybrid/var policy meets its response time target, while
keeping power consumption low. In particular, our Hybrid/var
policy provides a 35% savings in power consumption when
compared to the Predictive 90%ile/1 h and lowers response time
by as much as 41% when compared to the Predictive Mean/1 hr.

b) VDR trace: We  ran another experiment using the normalized
workload demand for the VDR trace. Fig. 13 shows the normal-
ized mean response time, power consumption, and number of
provisioning changes for the different policies. Again, we see
that the Predictive Mean and Reactive policies fail to meet the
target mean response time and incur more SLA violations. Fur-
Please cite this article in press as: A. Gandhi, et al., Hybrid resource p
consumption, Sustain. Comput.: Inform. Syst. (2012), http://dx.doi.org

ther, the Reactive policy has the highest number of provisioning
changes. Both Hybrid/var and Predictive 90%ile/1 h succeed in
meeting the response time target but our approach uses slightly
lower power. Note that Predictive 90%ile/1 h significantly

Fig. 13. Experimental results for the VDR trace.
 PRESS
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over-provisions resource for the Web  trace (Fig. 12),  which indi-
cates that its performance really depends on the characteristics
of the workload. By contrast, our approach works well for both
traces.

In summary, we conclude that our hybrid approach out-
performs other provisioning approaches such as the predictive
and reactive policies, and combinations of both with fixed inter-
vals, when considering SLA violations, power consumption, and the
number of changes.

6. Related work

6.1. Workload analysis and characterization

Numerous studies have examined workload demand traces.
Characterization studies of interactive workloads such as Web  or
media servers indicate that demands are highly variable, although
daily and weekly patterns are common [2,7]. Rolia et al. find similar
patterns in business application workloads [24].

A lot of research has been conducted to predict future work-
load demands. Vilalta et al. use classical time series analysis to
distinguish between short-term and long-term patterns [28]. Dinda
and O’Hallaron use linear models such as AR, moving average
(MA), autoregressive moving average (ARMA), and autoregressive
integrated moving average (ARIMA) models for the short-term pre-
diction of application CPU demand [9].  Hoogenboom and Lepreau
also use classical time series analysis to predict future workload
demands [16]. Gmach et al. present a prediction algorithm using
time series analysis to extract patterns from historical workload
demand traces and predict future demands [13]. Hellerstein et al.
use ANOVA (analysis of variance) to separate the non-stationary
and stationary behavior of historical traces [15]. What distinguishes
our work from others is our dynamic programming based algorithm
for workload discretization and the incorporation of the provi-
sioning cost in our workload analysis, which is important from a
capacity planning and resource provisioning perspective.

6.2. Server provisioning

Existing server provisioning solutions can be broadly classified
into predictive and reactive solutions.

Predictive provisioning assumes there is a predictable and stable
pattern in demand and allocates capacity typically at the time-scale
of hours or days based on the pattern. Castellanos et al. exploit
the predictability in business applications’ demand to improve the
effectiveness of resource management [6].  With the adoption of
virtualization technology, server consolidation has emerged as a
promising technique to improve resource utilization and reduce
power consumption [23,27]. Though these approaches can be effec-
tive to a certain extent, choosing the proper provisioning size is
still a very difficult task. Our workload discretization technique can
help with this. However, large, unpredictable demand surges could
cause severe SLA violations.

Reactive provisioning on the other hand does resource allocation
in short intervals (e.g., every few minutes) in response to work-
load changes. One approach is to use reactive control loops that
are based on feedback control [1,22,26]. Others use reactive provi-
sioning strategies for resource allocation and power management
in virtualized environments. Typically, these approaches dynami-
cally allocate CPU shares to virtual machines and/or migrate VMs
rovisioning for minimizing data center SLA violations and power
/10.1016/j.suscom.2012.01.005

across physical servers at runtime [21,29]. Purely reactive policies
can react quickly to changes in workload demand, but issues such as
unpredictability, instability and high provisioning costs limit their
use in practice.

dx.doi.org/10.1016/j.suscom.2012.01.005
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There are several approaches that combine predictive and reac-
ive control [4,14,25]. While these approaches share some features
ith our hybrid approach, they differ in several aspects. First, our

pproach aims to optimize the performance, power consumption
nd provisioning cost simultaneously. The provisioning cost is par-
icularly important to consider as it can significantly impact the
erformance and power consumption [12]. Second, we propose and
pply a novel workload analysis technique, workload discretization,
o determine provisioning intervals with variable lengths whereas
redictive provisioning in other approaches uses simple fixed inter-
als. Third, our results show that our approach outperforms these
ther approaches.

We  first presented the hybrid provisioning approach in [32]. In
his work, we  have added (1) a workload characterization of three
eal applications; (2) a detailed description, comparison and eval-
ation of several different workload discretization techniques; and
3) an evaluation of different provisioning policies for additional
orkload traces, including Web  2.0 and WorldCup98 traces.

. Conclusion and future work

It is a challenging task to correctly provision IT resources in data
enters to meet SLA requirements while minimizing power con-
umption. In this paper, we presented novel workload analysis and
erver provisioning techniques that enable data centers to meet
heir SLA requirements while conserving power and avoiding fre-
uent power cycling of servers. We  analyzed workload traces from
roduction systems and developed a novel workload characteriza-
ion technique to accurately capture predictable workload demand
atterns. We  presented a hybrid server provisioning approach that
roactively provisions servers for the predictable demand pattern
nd leverages a reactive controller to provision for any unpre-
ictable demand. We  implemented and experimentally evaluated
ur work, and compared with existing and recent work on server
rovisioning. Our experimental results indicate that our hybrid
pproach successfully meets SLA requirements, is more power effi-
ient than existing approaches and avoids frequent power cycling
f servers.

In the future, we plan to incorporate dynamic CPU frequency
caling and power states into our approach. Further, we plan to
nvestigate how we can extend our hybrid provisioning approach
o multi-tier applications. While it should be easy to extend our
ybrid approach to the application/logic tier, it is not clear how
e can extend our approach to the data storage tier, which is usu-

lly the performance bottleneck. We  are also interested in applying
ur workload discretization technique to other capacity planning
nd resource provisioning problems, including workload consoli-
ation in virtualized environments and managing cooling resources

n data centers.
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