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Sustainability

“sustainable development is development that 
meets the needs of the present without 
compromising the ability of future generations 
to meet their own needs”

the Brundtland Commission of the United Nations, 1987
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http://en.wikipedia.org/wiki/Brundtland_Commission
http://en.wikipedia.org/wiki/United_Nations


Social 
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Damage
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Risk: Limited 
Adoption

Risk: Commercial 
infeasibility

What is “sustainability”?

Figure Credit: A. Agogino, UC Berkeley



Environmental Sustainability
• Life Cycle View

• Environmental impact factors (e.g., carbon, water, toxicity, etc.)

http://www.solidworks.com/sustainability/design/2722_ENU_HTML.htm
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Lifecycle View of IT
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Results are illustrative only. 
Actual footprint may differ. Ref: IEEE Computer 20095



Outline

• Data center from an energy perspective
• Data center chiller operation – temporal data mining 

[KDD 2009]

• Thermal anomaly detection  [SenserKDD 2010]

• PV generation forecasting  [AAAI 2012]

• Net-zero Data Center   [SIGMETRICS 2012]



Cloud Data Center
Energy Supply and Demand Side
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Typical Data Center Energy Use



Sustainable Operation of Data 
Center Chillers – Temporal Data 
Mining



Data Center Cooling Infrastructure

Computer room air-conditioner 
(CRAC)

Chiller Unit

Cooling Towers

Water 
Return 
(Tin)

Water 
Supply 
(Tout)

Consumes from 1/3 up to 1/2 of total power consumption
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Ensemble of Chillers

• Challenging to operate efficiently
• Complex cyber physical system

• Dynamic
• Heterogeneous
• Inter-dependent
• Many constraints

• Accurate models not available
• Rapid cycles undesirable – reduce lifespan

• Domain experts determine settings based on 
heuristics

• Can it be automated through a data-driven 
approach?

• Which unit to 
turn ON/OFF?

• At what 
utilization?

• How to handle 
increase/decrease 
in cooling load?

Chiller Ensemble
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Problem Statement
• Given the following chiller time series

• utilization levels 
• power consumption
• cooling loads

• Is it possible to determine which operational settings are 
more energy efficient?

• And then use this information to advise data center facility 
operators

13



Some Terminology

• IT cooling load

• Chiller utilization

• Chiller power consumption

• Chiller Coefficient of performance (COP)
Cooling Load 

Power consumption
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Our approach

• Goal: Sustainability characterization 
of multivariate time series data 

• Chiller utilization data

• Four Main Steps
• Symbolic representation
• Event encoding
• Motif mining
• Sustainability Characterization

Cluster Analysis

Multivariate Time Series Data

Event Encoding

Frequent Motif Mining

Symbolic representation

Transition-event sequence

Frequent motifs

Sustainability characterization
of frequent motifs

Other discrete 
data sources can 
be integrated
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Detour to Clustering (k-means)
[Slides adapted from Sriram Sankararaman]



Why Unsupervised Learning?







Applications





k-means

• Partition data set into k parts
– k is an input

• Each part is represented / summarized by its mean (centroid)
• Distance function: Euclidean
• Objective: minimize distance of points from their partition mean

– SSE
• Chicken and egg problem

– If know partition means  can assign points
– If know partitions  can find means



K-means

• Iterative procedure
• Pick initial k means randomly
• Two steps in each iteration

• Assignment Step
– Assign points to means

• Update Step
– Compute new means



















Our approach

• Goal: Sustainability 
characterization of multivariate 
time series data 
– Chiller utilization data

• Four Main Steps
– Symbolic representation
– Event encoding
– Motif mining
– Sustainability Characterization

Cluster Analysis

Multivariate Time Series Data

Event Encoding

Frequent Motif Mining

Symbolic representation

Transition-event sequence

Frequent motifs

Sustainability characterization
of frequent motifs

Other discrete 
data sources can 
be integrated
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Clustering 
• Individual vector: Utilization 

across all chiller units
• Raw Data: Sequence of such 

vectors
• Perform k-means clustering
• Use cluster labels to encode 

multi-variate time series
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Redescribing time series data

• Perform run-length 
encoding:

• Note transitions from one 
symbol to another

• Higher level of abstraction
• Transition events
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aabbbbbaaaxaaacccccaaaaabbbbbbaaeaaaaaacccccbggaaa

Discrete representation of chiller ensemble time-series
Clustering

aabbbbbaaaxaaacccccaaaaabbbbbbaaeaaaaaacccccbggaaa

Occurrence #1 Occurrence #2 ab->ba->ac
Motif

Transition
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Frequent
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Sustainability characterization of Motifs

• Average motif COP (coefficient of performance)
• Indicates cooling efficiency of a chiller unit

• COP =   IT Cooling Load
Power consumed

36



Experimental Results
• Data

• From HP R&D data center in Bangalore
• 70,000 sq ft
• 2000 racks of IT equipments

• Ensemble of five chiller units
• 3 air cooled chillers
• 2 water cooled chillers

• 480 hours of data

• 22 motifs found in the data
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Motif 5

Two Interesting Motifs

C1, C2, C3 → Air cooled

C4, C5 → Water cooled
Motif 8

Time (min) →

Chiller
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0%

34%

11%

0%

66%

0%
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Motif 8 Motif 5

COP 4.87 5.40
Units 
operating

3 air-cooled 2 air-cooled, 1 
water cooled
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Potential Savings

• Annual saving from operating in Motif 5 instead of 
Motif 8

• Cost savings = $40,000  (~10%)
• Carbon footprint savings = 287,328 kg of CO2
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Thermal Anomaly Detection – An 
Example



• Temperature in a DC needs to be 
monitored

• Too cold → waste of energy 
• Too hot → equipment failures

• Racks instrumented with temperature 
sensors

• How to detect anomalies?
• Threshold 
• Models
• …

Thermal Anomalies



Detour – Principal Component 
Analysis (PCA)

Some slides from Melanie Mitchell



Linear Dimensionality Reduction
High dimensional point   (X1, X2, … X400)

Linear Transformation or Projection

Low dimensional point  (Z1, Z2, … Z20)



Data

x2

x1



Data

x2

x1

Find direction of 
largest variation of the data



Data

x2

x1

Second principal component

Gives direction of second
largest variation

First principal component:
direction of 
largest variation of the data



Rotation of Axes



Dimensionality reduction



©200949

Anomalous Thermal Behavior Detection using PCA

• Example: Event (Anomaly) Detection

Start: 2009-09-28 16:44:34 End: 2009-09-28 23:58:34

Network Switch

Rack 
D5

Period of increased energy 
consumption (17 % increase)

Normal energy consumption
Switch turned on

[SensorKDD 2010]



PV Generation Forecasting



Fine grained PV Prediction using Bayesian Ensemble 

• Motivation
• Integration of renewable sources is an important goal of the smart grid effort

• PV output is variable and intermittent

• Knowledge of future PV output enables demand-side management and “shaping” 
in data centers

• Problem addressed
• Predict PV output for the next day

• Data
• Historical PV output data for about 9 months from the HPL Palo Alto site

• Weather data
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Fine grained PV Prediction using Bayesian Ensemble

• Approach

• Extract daily profiles from training data
• Use ensemble of predictors

• Naïve Bayes
• K-NN
• Motif based

• Perform Bayesian model averaging

• Results

[AAAI 2012]



Fine grained PV Prediction using Bayesian Ensemble

• Results

Error by weather condition
Actual versus predicted



The Net-Zero Energy Data Center 
Implementation in Palo Alto

Data center

Outside air

PV micro grid

Cooling 
infrastructure 
power demand

Data center supply side Data center demand 
side

C
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lle
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O
P

Outside Air Temperature (°C)
Load (kW)



Net-Zero Energy Methodology and Integration

Execution

Supply-side
Prediction

•Renewable power 
prediction
•Cooling capacity prediction

IT Demand
Prediction

IT Workload Planning 
• Integrate Supply and Demand Side
• IT Demand Shaping
• Power capping

Measurement
Verification

DC Operation Objectives:
• Net-zero energy operation
• Maximize use of renewable energy
• Minimize dependability on Grid

Dynamic IT Provisioning

Dynamic Cooling Provisioning

Prediction
Planning

Verification and 
Reporting
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Ref: Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, C. Hyser, "Renewable and Cooling Aware 
Workload Management for Sustainable Data Centers", ACM SIGMETRICS/Performance, June 11-15 2012, London, UK. 



Prediction:  Summary
PV Supply Prediction

• Search for most “similar” days in the recent past 
• Hourly generation estimated from corresponding hours of “similar” days
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IT Workload Prediction

• Perform a periodicity analysis (e.g., Fast Fourier Transform) 

• Use an auto-regressive model to predict workload from historical data
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Cooling Capacity Prediction

• End-to-End Energy Modeling

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

Time (hour)

P
o

w
e

r 
(k

W
)

Outside Air Cooling Available Capacity

Ref: Breen, T.J. et. al. “From Chip to Cooling Tower Data Center Modeling: Validation of Multi-Scale Energy Management 
Model”, Proceedings of Itherm, June 2012

Ref: P. Chakraborty, M. Marwah, M. Arlitt, N. Ramakrishnan, Fine-grained Photovoltaic Output Prediction Using a Bayesian 
Ensemble, in Proceedings of the 26th Conference on Artificial Intelligence (AAAI'12), Toronto, Canada, July 2012



Planning:  Supply-Side Aware IT Workload Planning
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Demand Optimal Net 
Zero Plandemand 

shaping

Overall demand is “shaped” according to input constraints and 
operation objectives

Demand Shaping

Satisfy critical workload resource 
requirements

Planning Flow

A detailed workload scheduling and capacity allocation plan

• Workload scheduling plan

• IT resource and power capacity allocation

• Cooling micro-grid capacity allocation

electricity
price

goalscooling 
capacity
efficiency

energy 
storage

IT 
workload 
& SLAs

renewable
supply

Workload Planning

Ref: Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, C. Hyser, "Renewable and Cooling Aware Workload Management for Sustainable Data Centers", ACM 
SIGMETRICS/Performance, June 11-15 2012, London, UK. 



Power and Workload Visualization

low

medium

Before optimization After optimization
[VDA 2013]
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